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Abstract

When verifying safety-critical code on the level of source code, we trust the compiler to
produce machine code that preserves the behavior of the source code. Trusting a verified
compiler is easy. A rigorous machine-checked proof shows that the compiler correctly
translates source code into machine code.

Modern verified compilers (e.g. CompCert and CakeML) have rich input languages, but
only rudimentary support for floating-point arithmetic. In fact, state-of-the-art verified
compilers only implement and verify an inflexible one-to-one translation from floating-
point source code to machine code. This translation completely ignores that floating-point
arithmetic is actually a discrete representation of the continuous real numbers.
This thesis presents two extensions improving floating-point arithmetic in CakeML.

First, the thesis demonstrates verified compilation of elementary functions to floating-point
code in: Dandelion, an automatic verifier for polynomial approximations of elementary
functions; and libmGen, a proof-producing compiler relating floating-point machine code
to the implemented real-numbered elementary function. Second, the thesis demonstrates
verified optimization of floating-point code in: Icing, a floating-point language extending
standard floating-point arithmetic with optimizations similar to those used by unverified
compilers, like GCC and LLVM; and RealCake, an extension of CakeML with Icing into
the first fully verified optimizing compiler for floating-point arithmetic.
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Zusammenfassung

Bei der Verifizierung von sicherheitsrelevantem Quellcode vertrauen wir dem Compiler,
dass er Maschinencode ausgibt, der sich wie der Quellcode verhält. Man kann ohne
weiteres einem verifizierten Compiler vertrauen. Ein rigoroser maschinen-überprüfter
Beweis zeigt, dass der Compiler Quellcode in korrekten Maschinencode übersetzt.
Moderne verifizierte Compiler (z.B. CompCert und CakeML) haben komplizierte

Eingabesprachen, aber unterstützen Fließkommaarithmetik nur rudimentär. De facto
implementieren und verifizieren hochmoderne verifizierte Compiler für Fließkommaarith-
metik nur eine starre eins-zu-eins Übersetzung von Quell- zu Maschinencode. Diese
Übersetzung ignoriert vollständig, dass Fließkommaarithmetik eigentlich eine diskrete
Repräsentation der kontinuierlichen reellen Zahlen ist.

Diese Dissertation präsentiert zwei Erweiterungen die Fließkommaarithmetik in CakeML
verbessern. Zuerst demonstriert die Dissertation verifizierte Übersetzung von elementaren
Funktionen in Fließkommacode mit: Dandelion, einem automatischen Verifizierer für
Polynomapproximierungen von elementaren Funktionen; und libmGen, einen Beweis-
erzeugenden Compiler der Fließkommacode in Relation mit der implementierten ele-
mentaren Funktion setzt. Dann demonstriert die Dissertation verifizierte Optimierung
von Fließkommacode mit: Icing, einer Fließkommasprache die Fließkommaarithmetik mit
Optimierungen erweitert die ähnlich zu denen in unverifizierten Compilern, wie GCC
und LLVM, sind; und RealCake, eine Erweiterung von CakeML mit Icing als der erste
vollverifizierte Compiler für Fließkommaarithmetik.
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CHAPTER 1

Introduction

To run source code on a machine, one can either interpret it directly, or translate source
code to machine code using a compiler. If we opt for using a compiler and run it on source
code, we expect that the compiler generates machine code with the behavior specified
in our source code. However, Yang et al. [121] have shown that compilers can produce
machine code that does not have the same behavior as the source code they started off
with due to compiler bugs. While a compiler bug is not particularly harmful in everyday
coding, a compiler bug can have significant impact on safety-critical code, since such code
is part of, e.g., airplanes, surgical robots, and self-driving cars.
One way to ensure that safety-critical code behaves as expected is through formal

verification. This formal verification is most tractable on the level of source code. To not
invalidate the guarantees established by verification of the source code, it is mandatory
that the machine code produced by the compiler behaves like the initially given source
code. As an example, a system designer may prove that a proximity sensor for an
autonomous car always raises an alarm before a car crash. Clearly, the machine code
generated by the compiler for this proximity sensor must still always raise an alarm before
a car crash and not randomly stop working, making it mandatory that the compiler
preserves guarantees of source code and is free of compiler bugs.
The absence of compiler bugs cannot be proven by even the most rigorous testing.

Testing can only prove the presence of bugs, but never their absence. But, a way of
showing that a compiler is bug-free is to formulate a rigorous mathematical proof that
the compiler preserves the behavior of its input source code. From such a proof, we can
conclude that the compiler a) contains no bug, and b) preserves guarantees proven about
the source code. We call a compiler that provably preserves the behavior of source code a
verified compiler, and we call the accompanying proof a compiler correctness proof 1.

1In fact, the only code that Yang et al.[121] could not find any bugs in was the code of a verified
compiler.
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Chapter 1: Introduction

Proving compiler correctness with pen-and-paper is a major challenge, because pen-
and-paper proofs are in general error prone and compiler correctness proofs specifically
require substantial bookkeeping when done properly. Instead, compiler correctness is
commonly proven using a so-called interactive theorem prover (ITP).

An ITP implements a logic as a set of rules and these rules are used to perform proofs
in the ITP. This set of logical rules is usually justified by an underlying mathematical
theory and therefore trusted by users of the ITP. Within a subset of the ITP’s trusted
logic one can usually write functional programs and prove properties of these programs
with the ITP. The first benefit of an ITP for proving compiler correctness is that because
the ITP is trustworthy, any proof performed with the ITP is generally more reliable than
a pen-and-paper argument. The second benefit of an ITP is that the ITP makes it easier
to update and maintain proofs if the implementation of the compiler changes.

Verfied compilers are not a new topic, and many different verified compilers have
been developed [89, 90, 66, 74, 124, 113]. The two most mature verified compilers
are CompCert [74], which implements a version of the C-language standard [59], and
CakeML [113], which implements a dialect of Standard ML [88]. Both CompCert and
CakeML handle interesting programs and support features like integer and word arithmetic,
Boolean checks, memory, I/O, and rich control structures.

Example. Now that we have covered some ground for verified compilers, let us look
back at our initial motivation: compiling safety-critical source code to machine code
while preserving correctness guarantees. As an example, we look at a small kernel that
computes the x coordinate when translating polar to cartesian coordinates2:

fun polToCart_x(radius: double, theta: double): double = let

val pi = 3.14159265359

val radiant = (theta * (pi / 180.0))

in (radius * cos (radiant)) end

Function polToCart_x could for example be used in an autonomous car. A key challenge
of verified compilation for our example kernel is that the kernel is implemented in (64-bit
double) floating-point arithmetic.

To understand why verified compilation of floating-point arithmetic is challenging, we
first look at what makes floating-point arithmetic tricky in the first place. Floating-point
arithmetic is commonly used to represent real-numbers in computers. However, because
some real numbers like, e.g., π are infinite floating-point arithmetic cannot represent

2The kernel is based on the polarToCarthesian,x benchmark of FPBench [31]
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Chapter 1: Introduction

all real-numbers in finite hardware. Thus, discrete floating-point arithmetic necessarily
approximates the continuous real-numbers. This approximation comes at the price of an
unavoidable difference between the idealized real-number, and its discrete floating-point
representation, the so-called roundoff error. It is this very roundoff error that makes
implementing floating-point arithmetic in a verified compiler hard.

Before the work done in this thesis, both CompCert and CakeML were not able to reason
about the roundoff error of floating-point arithmetic at all. One particularly striking
observation is that both CompCert and CakeML compile floating-point arithmetic one-to-
one into machine code, i.e., each floating-point operation in the source code corresponds to
one floating-point operation in the produced machine code. This is in stark contrast to how
any other arithmetic, and source code program in general, is handled as a verified compiler
generally attempts to optimize the machine code for the target architecture. Further,
we have explained that floating-point arithmetic is used to implement real-numbers, and
thus one would expect the compiler correctness theorem to relate floating-point machine
code to real-number arithmetic. However, neither CakeML nor CompCert establish such
a relation between floating-point machine code and real-number arithmetic.

To remedy these deficiencies of verified compilers, this thesis presents two complementary
extensions of floating-point arithmetic in a verified compiler: First, we demonstrate how a
verified compiler can fully automatically compile a mathematical function like sin and cos

into floating-point machine code, if no hardware equivalent is available. Second, we extend
floating-point arithmetic in verified compilers such that performance of floating-point
machine code can be improved using optimizations. Both of these extensions ultimately
relate the produced floating-point machine code to the real-number semantics of the
initial program. We illustrate both extensions on the example code from above.

Extension I: Verified Compilation of Mathematical Functions. If we use func-
tion polToCart_x in an autonomous car and compile it with a state-of-the-art verified
compiler like CakeML or CompCert, the compiler can only try to replace the call to cos

by a general purpose library function. However, in an embedded setting, as is the case for
autonomous cars, such a library function might not be available. If a library function is
available, it may be inefficient as a general purpose function must account for all corner
cases of floating-point arithmetic.

If we take a step back, and carefully revise the setting, in which function polToCart_x

is meant to be used, one notices that in an autonomous car the designer can rely on the
inputs radius and theta of function polToCart_x being bounded as the car is likely only

3



Chapter 1: Introduction

ever to be used on earth, limiting the possible values the inputs may reach. This allows
the designer to state an input constraint restricting the input values, for example3:

1.0 ≤ radius ≤ 10.0 ∧ 0.0 ≤ theta ≤ 360.0

Using this input constraint it is possible to compute accurate bounds on the inputs of
the call to the cos function, and replace the general-purpose cos function with a custom
polynomial approximation that is use-case specific. This polynomial approximation is more
efficient as it does not need to handle all of the corner cases of floating-point arithmetic.
Prior to this work, both CakeML and CompCert were unable to make use of input

constraints and thus cannot compute custom polynomial approximations. To make
matters worse, coming up with a custom polynomial approximation manually is hard,
and therefore there exist automatic approximation algorithms. One example for such
algorithms are so-called Remez-like algorithms [94] and these are implemented in tools like
metalibm [69] and Sollya [25]. A key issue, both for verified compilers, and of polynomial
approximations in general, is that custom polynomial approximations introduce a second
source of error, the so-called approximation error. The approximation error bounds the
difference between an elementary function, and its polynomial approximation in real-
number arithmetic. Therefore, for a given elementary function, a Remez-like algorithm
computes both a polynomial approximation and a bound on the approximation error.
As an example, using Sollya we can approximate the cos function on [0, 1] with the
polynomial p(x) = 0.784× 10−2 × x3 − 0.547× x2 + 9.238× 10−3 × x+ 0.999 with an
approximation error of 3.809× 10−4.
Remez-like algorithms are known to compute the best-possible approximations for

elementary functions, but so-far, they have not been verified. Specifically, suppose that for
a given elementary function, a Remez-like algorithm computes a polynomial approximation
and an approximation error. A key question is whether the approximation error is a
true upper bound to the difference between the elementary function and its polynomial
approximation.

Contributions (Extension I). The first extension described in this thesis tackles the
problem of verifying polynomial approximations computed by Remez-like algorithms and
compiling these approximations to floating-point machine code using the CakeML verified
compiler. To this end, we first present Dandelion, a verified checker for polynomial approx-
imations (Chapter 3). Dandelion proves approximation error bounds fully automatically
and computes results fast with a verified binary.

3The input constraint is taken from polarToCarthesian,x benchmark of FPBench[31]
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Chapter 1: Introduction

The key challenge in developing Dandelion is to come up with an automatic and
verifiable method to prove real-numbered inequalities of the form maxx |f(x)− p(x)| ≤ ε
where f(x) is a real-numbered elementary function, p(x) is a polynomial, and ε is the
constant approximation error. This challenge is further complicated by the fact that
elementary functions are often defined as infinite sums, which rules out straight-forward
techniques based on evaluation.

Building upon Dandelion, we extend CakeML with a proof-producing compiler for
polynomial approximations, called libmGen (Chapter 4). For a given elementary function
and its polynomial approximation, libmGen automatically implements the polynomial in
CakeML. Our tool libmGen further proves a specification that relates the CakeML source
code to the real-numbered elementary function it implements with an accuracy bound
that includes both the approximation error and the roundoff error.

The main technical challenge in developing libmGen is to properly automate the
translation from elementary functions to CakeML source-code, with an accompanying
accuracy proof. This requires a combination of analyses to ensure that a valid accuracy
bound is computed which accounts for both the approximation error and the roundoff
error.

Example Continued. Before explaining the second extension of the thesis, we briefly
return to our example. With the tools from the first extension described in this thesis,
CakeML implements function polToCart_x as:

fun polToCart_x(radius: real, theta: real): real = let

val pi = 3.14159265359

val radiant = (theta * (pi / 180.0))

val cos_rad = ((radiant^3 * 3.3222216089257017e-09) +

((radiant^2 * 0.2026423215866089) +

((radiant * -1.2732393741607666) + 1.3056366443634033)))

in (radius * cos_rad) end

If we compile this program to machine code with CompCert or CakeML, we get ma-
chine code that exactly implements the original source code. While verified compilers
can relax the required one-to-one correspondance between source and machine code by
performing conservative, bit-accurate optimizations (e.g., replacing 2× x with x+ x) they
preserve the IEEE-754 semantics [58] of their input programs in all other cases. This
approach to compilation is in stark contrast to the rich set of so-called fast-math opti-
mizations used by unverified compilers such as GCC [40] and LLVM [70]. When applying
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Chapter 1: Introduction

fast-math optimizations, an unverified compiler can, for example, replace the last com-
putation of variable cos_rad ((radiant * -1.2732393741607666) + 1.3056366443634033)
by an fma instruction (fma(radiant, -1.2732393741607666, 1.3056366443634033)). The
fma instruction fma(a,b,c) computes a locally more accurate version of (a * b) + c, as
the result is rounded to floating-point only once. An unverified compiler may use the fma

instruction as the instruction is said to be locally more accurate and faster. However, this
very increase in accuracy changes the global roundoff error of the computation, which in
turn disallows introduction of fma instructions by a verified compiler.

Extension II: Verified Optimizations of Floating-Point Arithmetic. The fast-
math optimizations performed by GCC and LLVM cannot straight-forwardly be applied
by CompCert and CakeML as they necessarily reorder arithmetic expression, which in
turn prevents proving a one-to-one correspondance between source code and machine
code. Intuitively, this is because a floating-point multiplication a * b internally has to
be treated by the compiler as rnd (a × b), where × is a real-number multiplication,
and rnd translates real-numbers into floating-point constants. Consequently, expression
rnd (a × (rnd (b × c))) is not equivalent to rnd (rnd (a × b) × c).

However, if we take a step back and look at the context in which our example code
(and safety-critical floating-point code in general) is used, we argue that the code for an
autonomous car must anyway be able to tolerate (bounded) noise on the input values,
as no sensor reading will ever be perfectly accurate. Thus, both the code itself that
computes values from sensor readings, as well as all of its dependants must be able to
tolerate a certain, bounded noise. Rephrasing this observation a bit, the programmer is
indifferent to the exact version produced by the compiler as long as the machine code
adheres to a tolerable noise bound, i.e., there is no one-to-one correspondance needed.
Ideally, a verified compiler uses this very noise bound as its correctness criterion for
verified optimizations of floating-point programs.

Contributions (Extension II). In the second part of the thesis, we extend the CakeML
compiler with a proof-producing floating-point optimizer. To do so, we first design a
novel floating-point semantics, dubbed Icing, which is the first semantics that can verify
fast-math-style optimizations as they occur in GCC and LLVM while being backwards
compatible to verified compilers (Chapter 5).

The key challenge that we faced when designing Icing is coming up with a relaxed
version of the IEEE-754 floating-point semantics, which integrates with verified compilers
and optimizes floating-point programs with full control for the end-user. As Icing is
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destined to be used in a verified compiler, all of the above must be done while keeping
the proof burden for the end-user as small as possible.

Because Icing itself does not reason about accuracy bounds, we integrate it with the
CakeML compiler and a verified accuracy analysis to provide end-to-end guarantees about
optimized floating-point code in our extension to CakeML, called RealCake (Chapter 6).

The key technical challenge in designing RealCake is to properly integrate all the
necessary tooling required for proving accuracy guarantees for floating-point machine
code. While this may seem simple at a first glance, the key challenge here is that all
tools involved must be unified inside CakeML using delicate simulation proofs. To further
complicate matters, all of the work has to happen without breaking the already existing
tools built around the CakeML compiler.

Structure of This Thesis

The content of this thesis is based on previously peer-reviewed publications. Below we4

list each chapter and the publications on which it is based. Each of these chapters starts
with an explanation of which parts of the original paper have been kept, and which
have been removed or extended. Below, we give an overview of the thesis and which
publications are included in each chapter.

• Chapter 1 contains primarily new content but reuses formulations from the intro-
ductions of our papers which are the basis of Chapter 3, Chapter 5, and Chapter 6.

• Chapter 2 gives background information on key technologies used throughout the
thesis. The chapter presents new content.

• Chapter 3 presents Dandelion, a fully automated verifier for polynomial approxima-
tions computed by Remez-like algorithms. The content is based on the publication

Heiko Becker, Mohit Tekriwal, Eva Darulova, Anastasia Volkova, and Jean-Baptiste
Jeannin. “Dandelion: Certified Approximations of Elementary Functions”. In:
Conference on Interactive Theorem Proving (ITP). 2022. doi: 10.4230/LIPIcs.ITP.
2022.6

Artifact: https://github.com/HeikoBecker/Dandelion

4While I have been the main author of the publications included in the thesis, all scientific contributions
are referred to using “we” because none of the work would have been possible without all of my
collaborators.

7

https://doi.org/10.4230/LIPIcs.ITP.2022.6
https://doi.org/10.4230/LIPIcs.ITP.2022.6
https://github.com/HeikoBecker/Dandelion


Chapter 1: Introduction

• Chapter 4 presents libmGen, the proof-producing compiler from real-numbered
elementary functions to floating-point machine code. The chapter presents new
content and is not based on a scientific publication.

• Chapter 5 presents the Icing language that supports fast-math-style optimizations
in a verified compiler. The chapter is based on the publication

Becker, Heiko and Darulova, Eva and Myreen, Magnus O. and Tatlock, Zachary.
“Icing: Supporting Fast-Math Style Optimizations in a Verified Compiler”. In:
Conference on Computer Aided Verification (CAV). 2019. doi: 10.1007/978-3-030-
25543-5_10

Artifact: https://gitlab.mpi-sws.org/AVA/icing

• Chapter 6 presents RealCake the first verified optimizing compiler relating floating-
point machine code with its unoptimized real-numbered equivalent. The chapter is
based on the publication

Heiko Becker, Robert Rabe, Eva Darulova, Magnus O Myreen, Zachary Tatlock,
Ramana Kumar, Yong Kiam Tan, and Anthony Fox. “Verified Compilation and
Optimization of Floating-Point Programs in CakeML”. in: European Conference on
Object-Oriented Programming (ECOOP). 2022. doi: 10.4230/LIPIcs.ECOOP.2022.1

Artifact: Heiko Becker, Robert Rabe, Eva Darulova, Magnus O. Myreen, Zachary
Tatlock, Ramana Kumar, Yong Kiam Tan, and Anthony Fox. “Verified Compilation
and Optimization of Floating-Point Programs in CakeML (Artifact)”. In: Dagstuhl
Artifacts Series 8.2 (2022). doi: 10.4230/DARTS.8.2.10

• Chapter 7 concludes the thesis and highlights potential future work. The chapter
presents new content.
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CHAPTER 2

Background

Before going into the contributions of the thesis, we give an overview of the key tech-
nologies and concepts used throughout. This chapter starts with a primer on interactive
theorem proving, which is the key technology used for all of the contributions, then the
chapter explains the main ideas of floating-point arithmetic, and finally, the chapter gives
an introduction to the analysis of roundoff errors.

2.1. Interactive Theorem Proving

The key technology used throughout this thesis is interactive theorem proving. On a
high-level, interactive theorem proving performs rigorous mathematical proofs with the
help of a computer; proofs are performed using a so-called Interactive Theorem Prover
(ITP).

Notable results have been formally proven with ITPs like, e.g., the Kepler conjecture [48],
the four-color-theorem [43], and the seL4 operating system microkernel [65]. The main
purpose of an ITP is to assist the user by keeping track of the current state of the proof
and ensuring that no mistakes are made. We explain this key functionality with an
example.
We prove the closed form for the sum of the first n natural numbers, discovered by

Gauss:

∀n.
n∑
i=0

n =
n ∗ (n+ 1)

2

The summation can be easily defined as a function:

fun sum n = if n = 0 then 0 else n + sum (n -1)

and in an ITP we state the closed form from above as the proof goal

∀ n. sum n = (n * (n + 1)) / 2

9
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The proof of the goal is commonly done by induction, and the ITP keeps track of the
two subgoals:

sum 0 = (0 * (0 + 1)) / 2 Base

sum n = (n * (n + 1)) / 2
sum (n + 1) = ((n+1) * ((n + 1) + 1)) / 2

Step

The goal labeled “Base” corresponds to the induction base, and the goal labeled “Step”
corresponds to the induction step. A key benefit is that after telling the ITP that we
perform an induction on n, the ITP automatically generates the proof goals “Base” and
“Step”. However, if we look closely at the induction step, it is apparent that the ITP only
started the induction, but did not automatically perform additional simplification steps
as one would have done in a pen-&-paper proof.
In general, the exact steps required to finish our example proof vary depending on

which ITP is used. This difference in proof steps stems from the different underlying
logics used to justify theorems in ITPs and how these logics are implemented.
One way to implement such an underlying logic is the calculus of inductive construc-

tions [102], which is for example used in the ITPs Coq [116], and Agda [115]. Another way
to implement such a logic follows the architecture presented in the Logic for Computable
Functions (LCF) which has been first described by Milner [87]. In LCF, a small, trusted
kernel of logical rules is used to justify each and every proof step in the ITP. ITP’s
following this key idea of a trusted small kernel are called “LCF-style” provers, and
example ITPs are Isabelle/HOL [119], HOL-Light [117], and HOL4 [118]. HOL4 was used
to develop the tools presented in this thesis and thus we give an intuition of how proofs
are performed inside HOL4.

As an LCF-style prover, HOL4 implements a small, trusted, logic kernel and an overview
of the rules used by the HOL4 kernel is given by Gordon and Melham [44]1. Intuitively,
these rules represent elementary logical inference rules, from which all other operations
are derived. Exactly as in our example, functions are first-class citizens in HOL4 and are
reasoned upon during proofs. Figure 2.1 shows the HOL4 proof for our example theorem.
The text closed_sum between the Theorem keyword and the : defines the name for

the theorem to reference it in later proofs, and the text between the : and the Proof

keyword is the goal to be proven using HOL4. In the goal, ! is universal quantification,
DIV is division of natural numbers, and SUC refers to the “successor” function from Peano

1An up-to-date explanation of the kernel for the current release of HOL4 is also provided in the logic
manual on the official HOL4 webpage [118].
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Theorem closed_sum:

! n. sum n = (n * (n + 1)) DIV 2

Proof

Induct_on ‘n‘ >> gs[sum_def]

>> ‘SUC n * (SUC n + 1) = (SUC n + 1) + n * (SUC n + 1)‘

by gs[MULT_CLAUSES]

>> qspec_then ‘2‘ mp_tac ADD_DIV_ADD_DIV

>> impl_tac >- gs[]

>> disch_then (once_rewrite_tac o single o GSYM)

>> ‘SUC n * 2 + n * (n + 1) = SUC n * (SUC n + 1)‘ suffices_by gs[]

>> ‘SUC n * 2 = SUC n + SUC n‘ by gs[]

>> ‘n * (n + 1) = SUC n * n‘ by gs[]

>> ‘n * (SUC n + 1) = SUC n * n + n‘ by gs[]

>> simp[]

QED

Figure 2.1: Example Theorem and Proof in HOL4

arithmetic, i.e., SUC n is the next natural number after n. The text between the Proof

and the QED keyword contains the separate steps necessary to prove the theorem. In
HOL4, proofs are performed using so-called tactics that change the current goal until it
is equivalent to logical true (>). Thus we call each of the steps of the proof a tactic, and
they are combined using the “then” operator (>>) to form the overall proof.
In summary, the proof in Figure 2.1 proceeds by induction (Induct_on ‘n‘), and

then performs simplification steps about which we will not go into detail here. In fact,
throughout the thesis we usually only show theorem statements and leave the exact
proof-steps to the formal developments.

2.2. Compiler Verification

The key expectation we have when running a compiler is that the compiler faithfully
translates the source program into machine language and will not introduce new behaviors.
Overall, for a particular compiler cc, compiler verification rigorously proves this property
in an ITP as a theorem relating the behavior of the source language of cc to the behavior
of the produced machine language. Compiler verification proves the theorem
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Theorem 2.1 (cc correct).

p ⇓s r ⇔ cc (p) ⇓m r

where p is a source language program, ⇓s is the semantics of the source language, and r
the result of evaluating p under the semantics ⇓s. Further, cc (p) is the machine program
obtain from running the compiler cc on program p, ⇓m is the semantics of the machine
language, and r the result. It is necessary to formally specificy the semantics of both
source and target programs inside the ITP to have a formal way of reasoning about the
behaviors of both program versions.

Both CompCert and CakeML have deterministic source languages [73, 113]. To reduce
the complexity of proving Theorem 2.1, it is common to have ⇓s, and ⇓m be deterministic
languages, and prove explicitly the implication

Theorem 2.2 (cc forward simulation).

p ⇓s r ⇒ cc (p) ⇓m r

This implication is called a forward simulation as it proves a simulation following
the direction of the compiler, i.e., going from a property of the source program to a
property of the machine code produced by the compiler. The inverse direction, a so-called
backwards simulation, is in general more complicated to prove [73], but if the semantics are
deterministic, it is established as a simple corollary from determinism and Theorem 2.2.

In this thesis, we base our work on the CakeML compiler, and therefore we give a more
thorough introduction to its key ideas. CakeML is implemented and verified inside the
HOL4 ITP, and compiles to machine code for x86, RISC-V, ARMv7, ARMv8, MIPS, and
the verified Silver processor [78] from a dialect of Standard ML [88], which we refer to as
CakeML source.

Just like any other compiler, CakeML compiles programs by reading them from a file,
and parsing them into their source-code representation. In addition to this classic method
of compiling programs, the CakeML compiler provides an alternative way of compiling to
machine code through its proof-producing synthesis [2]. The proof-producing synthesis
translates HOL4 functions into CakeML source programs, with an equivalence proof.
These programs can then be compiled into machine code with the compiler.

Looking back at our general compiler correctness theorem (Theorem 2.1), machine
code compiled with CakeML has the same properties as the source code. This allows
for a very neat setting, which is not possible when using an unverified compiler, where
we prove properties about the behavior of the source program, e.g., the program never
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crashes when run with a certain kind of inputs, and the compiler proves for us that the
machine code has the exact same behavior. This property of verified compilers is key
to making verification of machine code implementations easier. To this end, CakeML
provides so-called characteristic formulae [104] (CF) to prove Hoare-like specifications of
CakeML source programs encoded in HOL4. Similar to other verification frameworks like,
e.g., VST [6] and Iris [63], CF comes with a library of HOL4 tactics to prove triples of
the form < P ,s,Q > where P is a pre-, and Q a post-condition for program s.

Throughout this thesis, we will refer to the trio consisting of the CakeML compiler, the
proof-producing synthesis, and the characteristic formulae as the CakeML ecosystem.

2.3. IEEE-754 Floating-Point Arithmetic

Floating-point arithmetic is standardized in IEEE-754 [58]. The standard defines that a
floating-point number is described by a triple (s,m, e), representing the fraction −1s ∗
m ∗ 2e−p. In hardware, s is a 1-bit word, representing the sign, word m is the so-called
mantissa, and word e the biased exponent. Exponent e is said to be biased as it is offset
by the constant p. The number of bits of m and e, and the value of p differ based on the
precision of the target format. IEEE-754 defines single precision (m: 24 bits, e: 8 bits, p:
127) and double precision (m: 53 bits, e: 11 bits, p: 1023) representations. In hardware,
one bit of the mantissa is not stored explicitly, but determined by the value of e. If the
exponent is 0, this so-called implicit bit is 0, otherwise it is 1. Floating-point numbers
where the implicit bit and the exponent are 0 are called sub-normal numbers, all other
numbers are called normal numbers.

According to IEEE-754, each floating-point operation must be computed in hardware as
if it was computed using real numbers and then rounded to the target representation. IEEE-
754 defines different rounding modes that determine how a floating-point representation
for a real number is found. The most commonly used is round to nearest with ties to
even. We use a x̃p to denote real-number x rounded to precision p, and a ◦̃p b to denote
the real-number binary operation ◦ applied to the arguments and the result rounded to
precision p. According to IEEE-754, a binary floating-point operation performed in round
to nearest, ties-to-even can be abstracted as

a ◦̃p b = (a ◦ b) ∗ (1 + δ) + γ where |δ| ≤ εp and |γ| ≤ ζp (2.1)

The constants εp and ζp are defined for each and every floating-point type in IEEE-754.
If the resulting number is a normal floating-point number, ζp is 0, and for subnormal
numbers, εp is 0. The perturbations by δ and γ model the rounding to a floating-point
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number. While there are some cases where the result of rounding can be computed exactly,
their number is negligible in comparison to those that have to be rounded, leading to
roundoff errors.

The IEEE-754 standard also defines five different exceptions that may occur during
computations:

• Invalid: a mathematically undefined operation is performed (e.g., square-root of a
negative number)

• Div-0: a division by zero occured

• Overflow: the rounded result value cannot be represented in the target format

• Underflow: the rounded result is a sub-normal number

• Inexact: the rounded result is different from the exact real-number result

A computation that raises an Invalid returns a so-called Not-a-number special-value
(NaN), whereas Div-0 and Overflow return one of {∞,−∞}. Generally, evaluation is
resumed if one of these exceptional values occurs, but they can lead to unexpected
computation results2. The latter two exceptions (Underflow and Inexact) do not return
exceptional values and act as mere signals to the programmer.

2.4. Analysis of Finite-Precision Computations

We have seen that roundoff errors are unavoidable for floating-point arithmetic, and that
exceptional values should be avoided. In general, this is true for any datatype used to
represent real numbers, and these are commonly called finite-precision computations. In
general, analysis of finite-precision computations tries to statically determine how large
the roundoff error of a computation may get. To this end, a roundoff error analysis
computes an upper bound to

max
x
|f(x)− f̃(x̃)| (2.2)

where f(x) is a real-numbered function, and f̃(x̃) its finite-precision counterpart. Clearly,
if x were unbounded, the roundoff error would become infinity. Thus roundoff error
analysis requires knowing range bounds for input variables to compute non-trivial bounds.
Further, if an exceptional value occurs, the value of f̃(x̃) becomes undefined and the
roundoff error is infinite. Therefore roundoff error analysis simultaneously has to check
for exceptional values while computing roundoff errors.

2The NaN value for example is not reflexive, i.e., the Boolean check NaN = NaN always returns false.
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Error analysis is still an ongoing research topic, with various tools and different tradeoffs
available. So far, the tools are limited to either straight-line kernels [37, 111, 34], or they
provide limited support for conditionals and loops [120]. Here, we focus on the certified
floating-point dataflow analysis tool FloVer [12] as its implementation is available in the
HOL4 theorem prover.
In its initial version, FloVer was designed as an external validation tool for unverified

roundoff error analysis. We have since extended it with a roundoff error analysis whose
result is automatically validated. Our explanation focuses on how FloVer computes upper
bounds on roundoff errors but applies to all other tools that use a forward dataflow analysis
as well. FloVer’s input programs are straight-line numerical kernels consisting of constants,
variables, unary negation, binary +,−, ∗, /, let-bindings and so-called fused-multiply-add
instructions. A fused-multiply-add (fma) is a ternary operation, and fma(a,b,c) computes
a locally more accurate version of (a * b) + c by only rounding the final result of the
computation. Orthogonal to the supported operations, FloVer analyzes so-called mixed-
precision programs, where different parts of the program are executed with different
finite-precisions. As an additional finite-precision, FloVer supports analysis of fixed-point
arithmetic through its generalized error computations.
For a single finite-precision operation ◦̃p, FloVer computes an upper bound to Equa-

tion 2.2:

max
x∈P
|(a ◦ b)− (ã ◦̃p b̃)|

which FloVer translates into

max
x∈P
|((a ◦ b)− (ã ◦ b̃)) + error(a ◦̃ b, p)|

The left-hand-side ((a ◦ b) − (ã ◦ b̃)) is called the propagation error, as it is the error
accumulated in the arguments to ◦, and function error on the right-hand-side computes the
newly contributed error of ◦. Here, p is the finite-precision type of operation ã ◦̃p b̃. For
a floating-point precision p, function error computes an upper bound using Equation 2.1.
To support fixed-point arithmetic, FloVer generalizes Equation 2.1 in its generalized
error model. For the purpose of this thesis, we limit our explanations to the analysis of
floating-point arithmetic.
In Equation 2.1, the roundoff error depends on both the real-numbered range of the

arguments, and the error contributed by the operation. Thus FloVer splits roundoff error
analysis into a real-numbered range analysis, and a roundoff error analysis based on these
ranges. What is more, fixed-point arithmetic requires real-numbered ranges to check for
overflows. Both analyses are implemented and verified for interval arithmetic [91].
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Verifying Error Analysis Results. FloVer takes as input a certificate containing the
analyzed real-number function f , a mixed-precision type assignment Γ, a real-number
range analysis result R, and an implementation error analysis result E . Given a certificate,
FloVer checks for the following points of failure in the analysis result:

• wrong mixed-precision assignment (ME): As the kernel uses different finite-precision
arithmetics, the assigned types can be incomptable, i.e., a computation with 32-bit
floating-point values may use a 64-bit floating-point value.

• real-numbered division-by-zero (R0): The real-number program may contain a
potential division-by-zero. For soundness of the analysis we rule out these exceptional
cases.

• finite-precision division-by-zero (F0): Similarly, due to implementatiton errors, the
overall error may become large enough that while the real-number execution is fine,
its finite-precision counterpart runs into a division-by-zero exception.

• finite-precision overflow (F∞): The real-number program can be run fine, but the
values become too large to be representable in a chosen finite-precision, which leads
to runtime overflow errors.

• real-numbered ranges are unsound (RA): The real-numbered range analysis may fail
to compute sound upper bounds on the actual ranges for a subexpression of the
real-numbered program.

• implementation error estimate is unsound (EA): Similar to above, the implementa-
tion error analysis may have failed to compute sound upper bounds on the roundoff
error for a subexpression of the program.

FloVer rules out each of these failures by checking a correctness certificate produced by
its unverified analysis.
In FloVer, errors RA and EA are checked by recomputing the analysis results R and
E inside the logic of HOL4 using interval arithmetic. FloVer checks that ME does not
occur via a simple type-inference algorithm. The type inference checks that whenever
an arithmetic operation is performed on a mixed-precision expression, that the target
precision is at least as accurate as the argument precisions. Errors R0, F0, and F∞ are
checked in FloVer by the real-numbered range analysis, and the roundoff error analysis
respectively.

FloVer’s rigorous soundness proof shows once and for all that if a certificate is checked
correctly, no failure was made by the unverified roundoff error analysis, i.e., no error

16



Chapter 2: Background

can occur in the real-number program, no exceptional value can occur at runtime for
the finite-precision counterpart, and both the real-number ranges R and the roundoff
error analysis E are sound upper bounds to the ranges and errors inferred by FloVer.
As reference for soundness, we give a semantics based on Equation 2.1 and its dual for
fixed-point arithmetic. In a separate proof, FloVer connects its floating-point semantics
to a HOL4 formalization of IEEE-754 floating-point semantics [49] and we show that
roundoff error bounds validated by FloVer are valid for IEEE-754 floating-point semantics
as well.
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CHAPTER 3

Dandelion

Certified Approximations of Elementary Functions

This chapter is based on our paper titled Dandelion: Certified Approximations of
Elementary Functions, which has been published at ITP’22. The work was done in
collaboration with Mohit Tekriwal, Eva Darulova, Anastasia Volkova, and Jean-Baptiste
Jeannin. Mohit Tekriwal has contributed proofs to the formal development under my
supervision, and Eva Darulova, Anastasia Volkova and Jean-Baptise Jeannin have provided
feedback on revisions of the writing.

• Section 3.1 is based on the ITP submission with minor rewordings.

• Section 3.2 contains the discussion of Harrison’s preliminary work from the ITP
submission; the background on polynomial approximations is new.

• Section 3.3, Section 3.4, and Section 3.5 are based on the ITP submission with
minor rewordings and reformulations for clarity.

• Section 3.6 is an extended version of the ITP submission and contains the original
description of the CakeML binary and an additional part about speeding up HOL4
computations with Karatsuba multiplications.

• Section 3.7, and Section 3.8 are based on the ITP submission with minor rewordings
and reformulations for clarity.

• Section 3.9 is new.

3.1. Introduction

Elementary functions, like sin and exp, are defined in real-numbers using infinite sums
and irrational constants (e.g., π). Consequently they cannot be directly translated
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into finite-precision arithmetic. Some compilers provide general-purpose floating-point
implementations of elementary functions. These general-purpose implementation usually
are software-defined approximations, and because of the required generality they can
become inefficient. In resource-constrained settings, as they occur in embedded systems,
real-numbers must be implemented using fixed-point arithmetic, where often no general-
purpose math-library is available. If no library function is available, or the implementation
is not useful in the context at hand, developers opt for custom polynomial approximations.

Coming up with a custom polynomial approximation manually is tricky. For once, any
polynomial approximation necessarily cannot compute the exact result of an elementary
function, and this difference in results is called the approximation error :

∀x ∈ P, |f(x)− p(x)| ≤ δ (3.1)

Here, f is the elementary function approximated with polynomial p, and δ is the approxi-
mation error. In general, polynomial approximations are computed for a particular range
of inputs, and therefore, Equation 3.1 constrains the input x to be from a precondition P .

As an alternative to manual approximations, approximation tools like, e.g., metalibm [69]
and Sollya [25], automatically compute a custom polynomial approximation and an
upper bound to the approximation error. Different approaches to compute polynomial
approximations and bounds on the approximation error exist, and the known most-
accurate are so-called Remez-like algorithms [100]. In a high-assurance setting, as is
common when dealing with verified compilers, a key question is whether Equation 3.1 is
true, i.e., whether the approximation error δ computed by a Remez-like algorithm is a
true upper bound to the difference between the elementary function f , and its polynomial
approximation p1.

This chapter presents Dandelion, an automatic certificate checker for results of Remez-
like algorithms. Dandelion is implemented and fully-verified in the HOL4 theorem
prover [67]. A certificate for Dandelion contains an elementary function, its polynomial
approximation, a precondition, and an approximation error, computed using a Remez-like
algorithm. We prove once and forall the correctness theorem that if Dandelion succeeds
to validate a certificate, Equation 3.1 is true.
Dandelion’s certificates are minimal: they only contain the input and output of a

Remez-like algorithm. Further, Dandelion certifies the known most-accurate approxima-
tions computed using a Remez-like algorithms. Previous approaches focused on manual

1Muller, Jean-Michel [94](page 52) warns:”[. . . ] even if the outlines of the [Remez] algorithm are
reasonably simple, making sure that an implementation will always return a valid result is sometimes
quite difficult[. . . ]”.
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proofs [53]; verify only Chebyshev approximations [20], which are not as accurate as
those computed by Remez-like algorithms; or base their verification mainly on interval
arithmetic [82]. Dandelion is the first tool that automates the approach of Harrison [53],
and thus the key challenge that Dandelion solves is automation; Dandelion is based on
polynomial zero finding and checks certificates fully-automatically — there is no user
interaction required.

It may seem that one should rather verify an implementation of a Remez-like algorithm
instead of verifying its results. However, a correctness proof for a particular implementation
is always specific to implementation choices, and thus, such a proof usually does not
scale to other implementations. Actually, the proof would need to be redone (or at least
repaired) with every implementation change. In contrast, as Dandelion verifies results of
Remez-like algorithms, implementation choices do not matter, which makes Dandelion
widely applicable.

In previous work, Harrison manually verified an implementation of the exponential
function in the HOL-Light theorem prover [53]. So far, the technique used by Harrison,
while general, has not been automated. Dandelion reuses the key ideas of the approach,
providing full automation.

One may think that automating the manual approach of Harrison is simple. However,
Dandelion solves two key technical challenges: Speed — It is generally known that
computations in ITPs are slower than unverified computations. This is especially true
when dealing with real-numbered computations. Computability — Harrison’s manual
proof uses non-computable functions to formalize key concepts.

We solve the problem of speeding up the computations by extracting a verified binary
with the CakeML compiler [113]. The verified binary provides the same correctness
guarantees as our in-logic implementation of Dandelion, but computes results significantly
faster: Dandelion’s binary checks certificates on average within 6 minutes. We solve the
problem of non-computable definitions by defining computable versions, and proving them
equivalent to their non-computable counterparts.

Dandelion certifies results of any implementation of a Remez-like algorithm. We evaluate
Dandelion on polynomial approximations generated from benchmarks from FPBench [31]
and the work by Izycheva et al. [60]. The evaluation shows that Dandelion is fast, and
that approximation errors of an elementary function f and its polynomial approximation
p are usually in the same order of magnitude as the infinity norm (maxx∈P |f(x)− p(x)|).
We encode the original proof-goal of Harrison as a certificate for Dandelion and the proof
is reduced to a single line of code in Dandelion.
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Contributions. In summary, this chapter contributes:

• a HOL4 implementation of Dandelion, a verified certificate checker for polynomial
approximations;

• a verified binary extracted using CakeML to make certificate checking fast; and

• an evaluation of Dandelion’s performance on a set of benchmarks, comparing it
with the state-of-the-art.

3.2. Manual Verification of Polynomial Approximations

Before giving a high-level overview of Dandelion, and explaining the detais behind
our approach, we quickly review how polynomial approximations are computed, and
paraphrase the key points of Harrison’s manual proof.

3.2.1. Polynomial Approximations

In mathematics, a polynomial approximation replaces an elementary function, like sin

and exp, with a polynomial, i.e., a finite series that computes similar results up-to a
certain degree of accuracy. The most well-known, and simplest method for coming up
with polynomial approximations is Taylor’s theorem:

Theorem 3.1 (Taylor’s theorem). If n is a natural number, f a n-times differ-
entiable, univariate function, and c a real-number, then there exists a univariate
function r, such that

f(x) = f(c) +
n∑
i=1

f (i)(c)× (x− c)i

i!
+ r(x)

In Theorem 3.1, f (i) is the i-th derivative of f , and i! is the factorial of i. The term
f(c) +

∑n
i=1

f (i)(c)×(x−c)i
i! from Theorem 3.1 is commonly referred to as the degree n

Taylor polynomial of f at c. Function r is called the remainder of the approximation
and gives a bound on the approximation error2. In Dandelion, we use a special case of
Taylor’s theorem where c = 0. This special case is commonly referred to as a McLaurin
series.

The book by Muller [94] provides a general overview of different approximation tech-
niques. Here we focus on Remez-like approximation algorithms as they are known to
compute most accurate results and thus are the target of Dandelions certificate checking.

2Some presentations of Taylor’s theorem give more explicit characterizations of the remainder term, but
we opt for a simpler presentation here.
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3.2.2. Remez Algorithm

In contrast to the simple statement of Theorem 3.1 from which Taylor polynomials are
computed, Remez algorithm is an iterative approximation algorithm. Our explanation
of Remez algorithm is based on the one given by Muller ([94], p. 53). The inputs to
the algorithm are a real-valued function f that is to be approximated, and a set of
points x0, . . . , xn, where xi ≤ xi+1. The algorithm then tries to find an approximating
polynomial p where p(xi) = f(xi). To this end, the algorithm solves the equation system

1 x10 . . . xn0

. . .

1 x1n . . . xnn

 ∗

p0

. . .

pn

−

f(x0)

. . .

f(xn)

 =


+ε

. . .

(−1)n+1ε


for the unknown values of p0, . . . , pn and ε. The solution is a polynomial p(x) =

p0 + p1×x+ p2×x2 . . ., and an error ε. The error ε is part of the solution of the equation
system but may not yet be an accurate bound on the approximation error. Therefore,
Remez algorithm computes a bound on the approximation error δ by finding the extremas
of |f(x)− p(x)|. To decide whether the polynomial p is a good enough approximation
or whether to continue the iteration, the algorithm checks whether the error polynomial
|f(x)− p(x)| equi-oscillates between δ, i.e., whether the extremal values of |f(x)− p(x)|
are δ. If this is the case, the polynomial p and the error δ are returned, otherwise
iteration continues with the a new set of points, where x0, . . . , xn are the extremal points
of |f(x)− p(x)|.

The overall algorithm may seem simple, but we highlight two key challenges in verifying
an implementation of a Remez-like algorithm: First, the algorithm is iterative and
only returns a valid result in the final step, which makes verifying the iterative process
hard. Second, while we have described the algorithm in terms of real-numbers, its
implementation is usually done in some finite-precision, so a correctness argument must
also relate finite-precision results to their real-number counterparts.

3.2.3. Manual Proof by Harrison

Coming back to verification of polynomial approximations, Harrison [53] has manually
verified an approximation p of the exponential function, which was presented by Tang [114],
showing that:

∀x.x ∈ [−0.010831, 0.010831]⇒ |((ex − 1)− p(x)| ≤ 2−33.2
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The manual verification by Harrison is split into two steps. First, Harrison simplifies
the overall proof goal to a proof about polynomials, by replacing ex − 1 with a high-
accuracy truncated Taylor series q. By truncating the series after the 7th term, the
approximation error of the series becomes 2−58 and the overall proof-goal is reduced from
|((ex − 1)− p(x)| ≤ 2−33.2 with the triangle inequality to

|q(x)− p(x)| ≤ 2−33.2 − 2−58 (3.2)

The difference between q(x) and p(x) itself is a polynomial h(x), and thus this first
step reduces the overall proof goal to proving an upper bound on the polynomial h. A
key observation by Harrison is that h represents the difference between two polynomial
approximations, and consequently, the points where h attains its maximum value (i.e.,
its extremal points) are those where the approximation error is the largest. To prove
Equation 3.2, it thus suffices to reason about the extremal points of h.

To reason about the extremal points of h, Harrison proved two well-known mathematical
theorems in HOL-Light, which we restate here for completeness. The first theorem proves
that a real-valued polynomial p defined on the closed interval [a, b] attains its extremal
values at the outer points a and b and the points where the first derivative is zero:

Theorem 3.2.
Let p be a differentiable, univariate polynomial defined on [a, b], and M a real
number, then

| p(a) | ≤M ∧ | p(b) | ≤M ∧

(∀x. a ≤ x ≤ b ∧ p′(x) = 0 ⇒ | p(x) | ≤M) ⇒

(∀x. a ≤ x ≤ b ⇒ | p(x) | ≤M)

The second theorem proves that the exact number of zeros of a polynomial is computed
from its so-called Sturm sequence. The Sturm sequence ss of polynomial p is defined
recursively as

ss0 = p ss1 = p′ ssi+1 = −rem (ssi−1, ssi)

where rem computes the remainder of the polynomial division ssi−1

ssi
. Computation stops

once the remainder becomes the constant 0 polynomial. The second theorem proven by
Harrison is called Sturm’s theorem:
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(* (1.0 <= radius <= 10.0) ∧ (0.0 <= theta <= 360.0) *)

fun polToCart_x(radius: real, theta: real): real = let

val pi = 3.14159265359

val radiant = (theta * (pi / 180.0))

val cos_rad = cos (radiant)

in (radius * cos_rad) end

Figure 3.1: Example program computing the x-coordinate when translating polar to
cartesian coordinates

Theorem 3.3 (Sturm’s theorem).
Let p be a differentiable, univariate polynomial defined on [a, b], and ss the sturm
sequence for p. If p has non-zero values on both a and b, and its derivative is not
the constant zero function, then the set of zeros of p has size V (a, ss)− V (b, ss).

Function V (a, ss) in Theorem 3.3 computes the number of sign changes when evaluating
the polynomials in the list ss on value a.

To prove the final inequality, Harrison computes unverified guesses for both the Sturm
sequence of h′(x) and the zeros of h′(x) using Maple, and manually validates them in
HOL4 using Theorem 3.3. By knowing the number of zeros, and their values, Harrison
then provably derives an upper bound on the extremal values of polynomial h using
Theorem 3.2, which in turn validates the approximation error bound.

3.3. Overview

Before explaining the details of Dandelion, we give a high-level overview of its key contri-
butions and how Dandelion automates the proof by Harrison. We base our explanations
on the motivating example from Chapter 1, which we repeat in Figure 3.1.

The example code converts polar to cartesian coordinates, and returns the resulting x
component. This code could for example be part of an autonomous car or a drone, and
inaccuracies in the conversion of coordinates may have catastrophic effects [95]. In an
embedded setting the code from Figure 3.1 could be implemented in fixed-point arithmetic,
which, however, does not come with standard and efficient library implementations of
elementary functions [60]. Hence, an engineer may approximate the function cos on line
8 in Figure 3.1. In Figure 3.2, function cos has been replaced by a custom polynomial
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fun polToCart_x(radius: Fixed, theta: Fixed): Fixed = let

val pi = 3.14159265359

val radiant = (theta * (pi / 180.0))

val cos_rad = (1.3056366443634033 +

(radiant * (-1.2732393741607666 +

(radiant * (0.2026423215866089 +

(radiant * 3.3222216089257017e-09))))))

in (radius * cos_rad) end

Figure 3.2: Example with polynomial approximation for cos

approximation, which can for instance be computed using the state-of-the-art synthesis
tool Daisy [60]3.

Daisy internally calls a Remez-like algorithm to generate the polynomial approximation
of cos, but the approximation algorithm and Daisy itself are not (formally) verified. To
prove that the approximation is correct, we use Dandelion. As Dandelion is a certificate
checker, it is straight-forward to extend Daisy with a function to generate the certificate
shown in Figure 3.3. The certificate encodes the elementary function to be approximated
(f), the polynomial approximation (p), the approximation error (ε), the input range for
the approximation (I), and an additional parameter n which we explain later. Note that
the input interval I recorded in the certificate captures the direct inputs to the elementary
function cos and is thus different from the input interval in the comment of Figure 3.1,
which captures inputs to the overall function polToCart_x.

Using its verified binary, Dandelion validates the example certificate in 31 seconds and
proves the HOL4 theorem

Theorem 3.4.

∀x. x ∈ I(x) ⇒ | cos(x)− p(x) | ≤ ε

If the approximation error had not been correct, the binary would emit an error message,
explaining which part of the validation failed.
Going back to the example certificate in Figure 3.3, the certificate uses only a single

elementary function (cos). In general, Dandelion supports more complicated elementary
3Daisy’s input language is Scala. For consistency, we present all our examples as CakeML source code,
but note that a straight-forward translation from CakeML source to Scala is easily implemented for
the subset of the language that we use in our examples.
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cos_cert = <|

f := Fun Cos (Var "radiant"); n := 32;

(* p (x) ~ 1.305 - 1.273 * x + 0.202 * x2 + 3.322 * 10−9 * x3 *)

p := [5476237/4194304; -5340353/4194304; 1699887/8388608;

3740489/1125899906842624];

(* ε ~ 0.306 *)

ε := 7661335245848499811609873770389478739611431267987/(25 * 10^48);

(* ~ x in [0, 6.284] *)

I := [("radiant", (0, 314159265359/50000000000))]; |>

Figure 3.3: Certificate for the approximation of cos in the example

function expressions, like exp(x× 1
2), and sin(x−1)+cos(x+1). Exactly as for Remez-like

algorithms, Dandelion only requires the functions to be univariate, i.e., the certificate
can only have a single free variable. Any approximation tool that can generate these
certificates can be used to generate inputs for Dandelion, and Dandelion can be used
independently of a particular approximation algorithm implementation.

The approach used by Dandelion follows the structure of the manual proof by Harri-
son [53] (Section 3.2.3 overviews the main theorems and ideas). The presented high-level
approach is general, but a key challenge solved by Dandelion is to automate each step
and extend them to more complex expressions. We explain the high-level ideas of how
Dandelion automates Harrison’s proof next.

As in Harrison’s approach, Dandelion splits the proof into two parts. In the first phase,
Dandelion replaces elementary functions in the certificate by high-accuracy approximations
computed inside HOL4 to reduce the overall goal to reasoning about a polynomial. The
second phase then proves that the approximation error is a correct upper bound on the
extremal points of the resulting polynomial by finding zeros of the derivative and bounding
the number of zeros with Sturm sequences. The key differences between Dandelion and
the proof by Harrison is that Dandelion supports more elementary functions, i.e., exp ,
sin , cos , ln , and tan−1 , and that its certificate checking is fully automated and does
not require any user interaction or additional proofs. Figure 3.4 gives an overview of the
automatic computations done by Dandelion and we explain them at a high-level for our
running example from Figure 3.1.

To prove the overall correctness theorem (Theorem 3.4), Dandelion first computes
a computable high-accuracy polynomial approximation for cos, denoted by q, using a
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compute extremal 
values of polynomials

replace elementary function 
with high-degree approximation

Phase 1

Phase 2

Certificate

Intermediate Result

Invalid Valid

: elementary function
: polynomial approximation

ɛ : error
: input constraints
: series terms

:high-degree approximation
: approximation error

Figure 3.4: Overview of Dandelion toolchain

truncated Taylor series of degree n, with an approximation error of 3.77e-3. Generally,
the certificate parameter n defines the number of series terms computed for the truncated
Taylor series in Dandelion. Exactly as for Harrison’s manual proof, Dandelion proves
an upper bound on the difference between q and the target polynomial approximation p
(Equation 3.2). Coming up with a general approach for computing accurate truncated
Taylor series of arbitrary elementary functions was a major challenge for Dandelion—we
implemented a library of general purpose Taylor series for the supported elementary
functions. Given a target degree, Dandelion automatically computes a polynomial
implementation and proves an approximation error for the truncated series. We explain
the first phase in more detail in Section 3.4.

In the second phase, Dandelion computes an upper bound on the polynomial h(x) =

q(x)− p(x) exactly like Harrison by reasoning about the zeros of its derivative h′, using
Sturm sequences to bound the number of zeros of h′. Based on the number of zeros,
Dandelion uses an (unverified) oracle to automatically come up with a list of zeros of h′.

To prove the final bound on h, Dandelion checks for each zero of h′ that the value of h
at this point is smaller than or equal to the residual error ε− 3.77e-3. A key challenge
of the checks in the second phase is that Harrison’s definition of Sturm sequences is
defined as a non-computable predicate, involving an existentially quantified definition
of polynomial division. Dandelion implements a computable version of both polynomial
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division and Sturm sequences, and relates them to Harrison’s predicates with equivalence
proofs. We explain how Dandelion computes the Sturm sequences automatically and how
Dandelion estimates zeros of polynomials in more detail in Section 3.5.

Dandelion’s computations heavily rely on real-number operations. To increase their
performance we have implemented a function that reduces real-number multiplications
to natural number multiplications and computes the result efficiently using Karatsuba
multiplications. Further, computing the Sturm sequence is the most computationally
expensive part of Dandelion, which we found to be impractical to do in logic. Thus we
extract a verified binary using the CakeML compiler for the second phase of Dandelion
only. For the extraction to work, we translated the HOL4 definitions of the second
phase into CakeML source code via CakeML’s proof-producing synthesis tool [2]. We
explain the simplification of real-number multiplications and the extraction with CakeML
in Section 3.6.

3.4. Automatic Computation of Truncated Taylor Series

As in Harrison’s manual proof, the first phase of Dandelion replaces the elementary
function in the certificate by a high-accuracy polynomial approximation. The crucial
difference is that Dandelion automates all of the manual steps, which we explain in this
section.

When Dandelion checks a certificate for function f with input range I, every occurence
of an elementary function f is automatically replaced with a truncated Taylor series tf,n.
The parameter n of truncated Taylor series tf,n is part of the certificate and specifies the
number of terms computed for the truncated series, for example, if n is 32 Dandelion
truncates the Taylor series of f after the 32nd term. The final result of the phase is a
high-accuracy polynomial approximation of function f , qf,n, and an overall approximation
error δf,n. We implement the first phase in a HOL4 function approxAsPoly and prove
soundness of approxAsPoly once and for all in HOL4:

Theorem 3.5 (First Phase Soundness).

approxAsPoly (f, I, n) = Some(qf,n, δf,n)⇒

(∀x. x ∈ I ⇒ | f(x)− qf,n(x) | ≤ δf,n)

The theorem shows that if approxAsPoly succeeds and returns qf,n and δf,n, then the
approximation error on input range I between f(x) and qf,n(x) is upper bounded by δf,n.
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To explain how approxAsPoly is implemented, we take f to be a single elementary
function, like sin and exp. In this first, simple case, the final polynomial approximation
qf,n and the truncated Taylor series tf,n are the same. Afterwards, we extend function
approxAsPoly to compute a single polynomial approximation of more complicated elemen-
tary function expressions like exp(x ∗ 1

2). The more complicated step combines interval
analysis and propagation of polynomial errors with the truncated Taylor series from the
simple case. Throughout this section, we use f to refer to the elementary function from
the certificate, tf,n as truncated Taylor series, δt,n as the approximation error of the series,
qf,n as polynomial approximation, and δf,n as the overall approximation error.

3.4.1. Truncated Taylor Series for Single Elementary Functions

Overall, Dandelion automatically computes a truncated Taylor series for the elementary
functions sin, cos, exp, tan−1, and ln 4; the series expansions for exp and ln existed
already in HOL4 prior to Dandelion and we port the series for tan−1 from HOL-Light.
For sin and cos we prove series based on textbook descriptions. Both the truncated series
tf,n and the approximation error δt,n, depend on the approximated elementary function f ,
as well as the number of series terms n from the certificate. Formally, Dandelion once and
for all proves a truncated Taylor series for each elementary function as a McLaurin series:

Theorem 3.6.

∀x n. Pre(x)⇒ f(x) =

n∑
i=0

(
f i 0

i!
× xi) + δt,n(x)

Here, f i is the i-th derivative of f , and the approximation error δf,n(x) is soundly
bounded from the remainder term of Taylor’s theorem (Theorem 3.1) for input value
x. Predicate Pre is a precondition constraining the values for which function f can be
approximated by the truncated series. We show all of the theorems proven for Dandelion
in Figure 3.5. The series for exp and ln are marked with a ∗ because they are based on the
HOL4 standard library proofs about exp and ln, but we extend them with a precondition
to make the approximation error computable for Dandelion.

When approximating an elementary function f by its truncated series, function
approxAsPoly always ensures that the precondition Pre is true based on the theorems in
Figure 3.5: The series for sin and cos have no preconditions; the series for exp requires

4Dandelion currently does not support tan, as a straight-forward reduction to sin(x)/cos(x) did not
work out.
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Theorem 3.7 (sin McLaurin series).

∀ x n. > ⇒

sin(x) =
n∑
i=0

(
xi

!i
× if even i then 0 else − 1

i−1
2 ) +

|x|n

!n

Theorem 3.8 (cos McLaurin series).

∀ x n. > ⇒

cos(x) =

n∑
i=0

(
xi

!i
× if even i then − 1

i−1
2 else 0) +

|x|n

!n

Theorem 3.9 (exp McLaurin Series∗).

∀ x n. 0 ≤ x⇒

exp(x) =
n∑
i=0

(
xi

!i
) +

exp(x)

!n
× xn

Theorem 3.10 (ln McLaurin Series∗).

∀ x n. 0 < x ∧ 0 < n⇒

ln(1 + x) =
n∑
i=0

(−1i+1 × xi

i
) +−1n+1 × xn

n

Theorem 3.11 (tan−1 McLaurin Series).

∀ x n. |x| ≤ 1⇒∣∣tan−1(x)−
n∑
i=0

(if even i then 0 else − 1
i−1
2×i × xi)

∣∣ ≤ |x|n

1− |x|

Figure 3.5: McLaurin series proven for Dandelion

inputs to be non-negative; the series for ln requires arguments greater than 1; and the
series for tan−1 requires arguments in (−1, 1).

When checking a certificate, function approxAsPoly automatically computes an upper
bound to the approximation error δf,n. Function approxAsPoly also must return the
McLaurin series as a polynomial following Harrison’s formalization. This technicality is
required because Dandelion’s second phase reuses Harrison’s formalization of polynomial
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arithmetic to simplify proofs. To return an appropriate result in approxAsPoly, we prove
once and for all that the truncated series from Theorem 3.6 can be implemented in
Harrison’s polynomial datatype:

Theorem 3.12.

∀ n.
n∑
i=0

(
f i 0

i!
∗ xi) = tf,n(x)

Theorem 3.12 proves that polynomial tf,n implements the truncated Taylor series of f
on the left-hand side for an arbitrary number of approximation steps n. We prove versions
of Theorem 3.12 for each elementary function supported by Dandelion. Putting it all
together, in the simple case, where f is a single elementary function, the proof of First
Phase Soundness (Theorem 3.5) is a simple combination of the Theorems in Figure 3.5
and Theorem 3.12.

3.4.2. Approximations of More Complicated Expressions

If we zoom out to the big picture, Dandelion so far only approximates a single elementary
function with approxAsPoly. In contrast, Remez-like algorithms generally can compute
an approximation for a compound function or an expression, as long as it remains uni-
variate. Compared to approximating individual functions, e.g., exp, an overall expression
approximation can be more accurate, sometimes avoiding undesirable effects such as
cancellation. Hence, Dandelion should also be able to certify those. We explain how
Dandelion approximates more complicated elementary expressions with truncated Taylor
series using exp(y × 1

2)− 1 on the interval [1, 2] as an example5.

From Theorems 3.9 and 3.12 Dandelion knows how to automatically compute a poly-
nomial approximation texp ,n and an approximation error δexp,n(x) for the exponential
function for a given input range on the argument. In our example, the input argument
is y × 1

2 , and thus the value of δexp,n(x) depends on the range of this expression, which
Dandelion computes automatically using interval arithmetic [91].

As interval analysis, we reuse the formalization of interval arithmetic from FloVer [12]
(Section 2.4) and extend it with range bounds for elementary functions. For our example
Dandelion also needs to compute a range bound for exp(y × 1

2). In general, because
elementary functions are defined non-computably in HOL4, we have to rely on a trick to
compute interval bounds. To compute interval bounds for elementary functions, Dandelion

5Currently, Dandelion does not generally support divisions, hence we explicitly represent y
2
as y × 1

2
.
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reuses our formalized truncated Taylor series. From Theorem 3.6, we know for a single
elementary function f that

f(x) = tf,n(x) + δf,n (3.3)

From this inequality, we derive a bound on f(x) in the interval [a, b]

tf,n(a) ≤ f(x) ≤ tf,n(b) + δf,n (3.4)

Note that Equation 3.4 does not need to subtract δf,n for the lower bound as Equation 3.3
is an equality and δf,n is usually positive. Equation 3.4 holds for monotone f only, and
thus we cannot apply it to sin and cos as they are periodic. For both functions, interval
analysis returns the closed interval [−1, 1]. For tan−1, Dandelion also relies on the coarse
upper bound of [−2, 2], because we can only inaccurately bound π in HOL4, as we will
explain in an instant. Dandelion’s interval analysis is proven sound once and for all in
HOL4.

With the interval analysis, we can soundly compute a polynomial approximation for exp,
texp,n on the range of y× 1

2 . Dandelion automatically composes the polynomial y× 1
2 with

texp,n to obtain a polynomial qexp(y× 1
2
),n with approximation error δexp(y× 1

2
),n. However,

we still need to come up with a polynomial approximation p and an approximation error
for the full function exp(y × 1

2) − 1. In our example, Dandelion treats the constant 1

as a polynomial returning 1, and automatically computes the polynomial difference of
qexp(...),n and q1,n. The global approximation error δ for the difference of qexp(...),n and
q1,n depends on the approximation errors accumulated in both polynomials. In a final
step, Dandelion automatically computes an upper bound on the global approximation
error by propagating accumulated errors through the subtraction operation.

Generally, Dandelion implements an automatic approximation error analysis inside func-
tion approxAsPoly that propagates accumulated approximation errors. The propagation
is implemented for basic arithmetic and elementary functions to support, e.g., expressions
like exp(x)+sin(x−1). For basic arithmetic, the propagation, while conceptually different
from roundoff errors follows the same rules and intuitions as the analysis implemented
in FloVer. In fact, the correctness proof of error propagation for basic arithmetic reuses
theorems proven for FloVer.

Computing Propagation Errors for Elementary Functions. When propagating
accumulated approximation errors through calls to exp and ln we simply exploit their
monotonicity properties and some basic trigonometric identities to compute a bound, e.g.,
exp(x+y) = exp(x)×exp(y). For tan−1 we currently do not propagate errors in Dandelion
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and raise an exception, simply because of a lack of supporting trigonometric identities
verified in HOL4. Both sin and cos require extra care as they are not monotonically
increasing, but periodic. To accurately propagate approximation errors through sin and
cos, our soundness proof relies on properties of sin(x) and cos(x) where x is in the interval
[0, π2 ] and x is an accumulated approximation error. This does not pose a true limitation
of Dandelion as errors larger than π/2 would anyway be undesirable and impractical. For
the correctness proof of approxAsPoly (Theorem 3.5) to succeed, however, Dandelion must
automatically prove that accumulated errors are less than or equal to π/2. This poses
a challenge as in HOL4 π is defined non-computably using Hilbert’s choice operator: if
0 ≤ x ≤ 2 and cos(x) = 0, then π is 2× x. To solve this problem, we reuse the truncated
Taylor series of tan−1 and the fact that tan−1(1) = π/4 to compute a lower bound r in
HOL4, where r ≤ π. At certificate checking time, when propagating the error δf,n through
sin and cos, Dandelion checks δf,n ≤ r

2 , which by transitivity proves that δf,n ≤ π
2 .

3.4.3. Extending Dandelion’s First Phase

All of the truncated Taylor series proven in Dandelion are for single applications of an
elementary function. For a particular application it may be beneficial to add special cases
to compute a single, more accurate, truncated Taylor series of an elementary function
like exp(sin(x)) instead of computing a truncated series for each function separately.

In Harrison’s original proof this would require manually redoing a large chunk of
the proof work whereas for Dandelion such an extension amounts to 4 steps: Proving
the truncated Taylor series as in Figure 3.5, implementing and proving correct the
polynomial tf,n as in Theorem 3.12, extending approxAsPoly with the special case for
the new elementary function, and finally using the theorems proven for the first two
steps to extend First Phase Soundness (Theorem 3.5) with a correctness proof for
the new case. Complexity of the proofs only depends on the complexity of the series
approximation. Dandelion then automatically uses the new series approximation whenever
the approximated function is encountered in a certificate, and the global soundness result
of Dandelion still holds without any required changes. The second phase directly benefits
from adding additional approximations as more accurate Taylor series decrease the
approximation error of the first phase.
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3.5. Validating Polynomial Errors

For a certificate consisting of an elementary function f , polynomial approximation p,
approximation error ε, input constraints I, and truncation steps n, the first phase of
Dandelion computes a truncated Taylor series qf,n and an approximation error δf,n, which
is sound by Theorem 3.5. Both qf,n and p are polynomials, and following Harrison’s
terminology, we refer to their difference qf,n(x)−p(x) as the error polynomial h(x). In the
second phase, Dandelion’s function validateZerosLeqErr automatically finds an upper
bound to the extremal values of h(x) and compares this upper bound to the residual
approximation error ε− δf,n, which we refer to as γ. We prove soundness of the second
phase once and for all as a HOL4 theorem:

Theorem 3.13 (Second Phase Soundness).

validateZerosLeqErr(qf,n, p, I, γ) = > ⇒

∀x. x ∈ I(x)⇒ | qf,n(x)− p(x) | ≤ γ

Before going into the details of how function validateZerosLeqErr automatically vali-
dates the residual error γ, we quickly recall the key real analysis result which we rely on
for its implementation: on a closed interval [a, b], a differentiable polynomial p can reach
its extremal values at the outer points p(a), p(b), and the zeros of p’s first derivative p′

(Theorem 3.2). To find the extremal values of h(x), function validateZerosLeqErr thus
needs to automatically find all zeros of h′(x).

Function validateZerosLeqErr splits finding the extremal values and validating γ into
three automated steps:

1. Compute the number of zeros using Sturm’s theorem (Theorem 3.3 in Section 3.2)

2. Validate a guess of the zeros computed by an unverified, external oracle

3. Compute an upper bound on extremal values (using the validated zeros) and compare
with γ

Conceptually, the second phase automates the main part of Harrison’s manual proof,
and the key step is computing Sturm sequences automatically in the first step. Next, we
explain the ideas behind automating each of the steps.

3.5.1. Bounding the Number of Zeros of a Polynomial

Dandelion bounds the number of zeros of a polynomial using Sturm’s theorem (Theo-
rem 3.3). A key challenge in developing this part of Dandelion was ensuring that the
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sturm_seq (p, q, n) =

if n = 0 then

if (rm (p, ( 1
q[degq]) * q) = 0 ∧ q <> 0) then SOME []

else None

else let g = - (rm (p, ( 1
q[degq]) * q)) in

if g = 0 ∧ ~ q = 0 then Some []

else if (q = 0 ∨ (deg q < 3)) then None

else case sturm_seq (q, g, n-1) of

None => None

|Some ss => Some (g::ss)

Figure 3.6: HOL4 definition of Sturm sequence computation

Sturm sequence is computable inside HOL4. In HOL-Light, Harrison defines Sturm
sequences as a non-computable predicate STURM that existentially quantifies results, and
thus the predicate can only be used to validate results in a manual proof.

In Figure 3.6, we show how Dandelion computes Sturm sequences. Function rm (p,q)

computes the remainder of the polynomial division of p by q, deg p is the degree of
polynomial p, and q[n] is the extraction of the n-th coefficient of q. As each polynomial
division operation decreases the degree of the result by at least 1, the Sturm sequence
for a polynomial p has a maximum length of deg(p) − 1, as computation starts with p
and its first derivative p′. Function sturm_seq is therefore initially run on polynomial
h′(x), h′′(x), and deg(h′) − 16. If sturm_seq(h’, h’’, deg h’-1) returns list sseq, the
complete Sturm sequence is h’::h’’::sseq, and Dandelion computes the number of zeros
of e′ as its variation on the input range, based on Theorem 3.3.

We have proven once and for all that the results obtained from sturm_seq(p’, p’’, n)

satisfy Harrison’s non-computable predicate STURM. Thus we can reuse Harrison’s proof
of Sturm’s theorem. Harrison’s Sturm sequences also use a non-computable predicate for
defining the result of polynomial division, and we prove it equivalent to a computable
version in Dandelion, inspired by the one provided by Isabelle/HOL [119]. Ultimately,
Dandelion uses these two equivalence proofs to reuse Harrison’s proof of Sturm’s theorem,
which we ported from HOL-Light.

6We add the additional parameter n to the function as “fuel” such that termination of the function is
automatically proven by HOL4.
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3.5.2. Finding Zeros of Polynomials

Given the numbers of zeros nz for h′(x), Dandelion next finds their values. As zero-finding
is highly complicated even in non-verified settings, Dandelion uses an external oracle to
come up with an initial guess of the zeros. These initial guesses are presented as a list
of confidence intervals [a, b], where h′(x) is speculated to have a zero between a and b.
The algorithm computing the confidence intervals need not be verified, as the intervals
themselves are easily validated by Dandelion. To validate a list of guesses Z, Dandelion
again relies on a result from real-number analysis ported from Harrison’s HOL-Light
development: Function f has a zero in the interval [a, b], if its first derivative f ′ changes
sign in the interval [a, b]. Thus, to check whether a confidence interval [a, b] in Z contains
a zero of h′, we need to check whether h′′ changes sign in the interval.

Dandelion validates the confidence intervals Z for h′ using a computable function that
checks automatically for each element [a, b] in Z that h′′(a)∗h′′(b) ≤ 0, which is equivalent
to a sign-change of h′′ in the interval. If the number of zeros found using Sturm’s theorem
is nz, Dandelion checks that this sign change occurs at least nz times in Z.

While we do prove our approach for finding zeros of polynomials sound, Dandelion
is necessarily incomplete. One known source for incompleteness are so-called multiple
roots as they occur in, e.g., p(x) = (x− 1)2. Harrison’s formalization implicitly relies on
the polynomial being squarefree and Dandelion inherits this limitation. This issue could
potentially be addressed using the approach of Li, Passmore, and Paulson [75], though it
would require reproving Sturm’s theorem for non-squarefree polynomials.

3.5.3. Computing Extremal Values

In the final step, Dandelion uses the validated confidence intervals Z which contain all
zeros of h′(x) to compute an upper bound to the extremal values of h(x). For an interval
[a, b], Dandelion would ideally bound the error of h(x) in [a, b] as the maximum of h(a),
h(b), and h(y), where y is a zero of h′(x). However, we have only confidence intervals
for the zeros available, and not their exact values. Therefore, Dandelion’s computation
of an upper bound to h(x) is more involved, and we base it on a theorem of Harrison.
Harrison’s theorem is a generalization of Theorem 3.2 for polynomial p, with derivative
p′, on interval [a, b], where zeros are bounded by confidence intervals in Z:
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validateZerosLeqErr (h, I, numZeros, zeros, eps) =

2 let mAbs = max (abs (fst I)) (abs (snd I));

realZeros = findN numZeros

4 (λ (u,v). poly (diff h) u * poly (diff h) v ≤ 0) zeros;

B = poly (MAP abs (diff h)) mAbs;

6 K = getMaxAbsLb h realZeros;

e = getMaxWidth realZeros;

8 globalErr = max (abs (poly h (fst I)))

(max (abs (poly h (snd I)))

10 (K + B * e))

in if ¬ (validBounds I realZeros ∧ recordered (fst I) realZeros (snd I))

12 then (Invalid "Zeros not correctly spaced", 0)

else if LENGTH realZeros < numZeros then

14 (Invalid "Did not find sufficient zeros", 0)

else if globalErr ≤ eps

16 then (Valid, globalErr)

else (Invalid "Bounding error too large", 0)

Figure 3.7: Function for computing a bound on the error polynomial h(x) in Dandelion

Theorem 3.14.

(1) (∀x. a ≤ x ≤ b ∧ f ′(x) = 0⇒ ∃(u, v). (u, v) ∈ Z ∧ u ≤ x ≤ v) ∧

(2) (∀x. a ≤ x ≤ b⇒ | p′(x) | ≤ B) ∧

(3) (∀[u, v]. [u, v] ∈ Z ⇒ a ≤ u ∧ v ≤ b ∧ |u− v | ≤ e ∧ | f(u) | ≤ K) ⇒

∀x. a ≤ x ≤ b⇒ | p(x) | ≤ max(| f(a) |, | f(b) |,K +B × e)

The theorem can be used to prove an upper bound on the error polynomial h(x)

which then can be compared to the residual error γ. For Dandelion, we automatically
compute the values described by the assumptions to compute an overall bound on h(x).
We implement this computations in a function validateZerosLeqErr in Figure 3.7, and
explain each of its computation steps on a high-level, based on the assumptions of
Theorem 3.14.

The first assumption (1) from Theorem 3.14 states that the confidence intervals in Z
contain only valid zeros. Function validateZerosLeqErr computes a list of valid confidence
intervals from the unvalidated intervals in line 3 of Figure 3.7. Based on assumption
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(2), Dandelion computes B by evaluating |h′(x)| on max(|a|, |b|) (line 5). Following
assumption (3), Dandelion computes K as the maximum value of evaluating the error
polynomial h on the lower bounds of the confidence intervals in Z (line 6), and a value e
as the maximum value of |u−v| for each [u, v] in Z (line 7). Dandelion then computes the
overall bound on the error polynomial h as max(h(a), h(b), K+B× e) (line 8). The code
in lines 11 to 14 of Figure 3.7 checks that the confidence intervals are in ascending order
(line 11), and that exactly the required number of zeros were found (line 13). To validate
the residual error γ, it then suffices to check whether max(h(a), h(b), K + B × e) ≤ γ

(line 15).

Overall, we prove once and for all soundness of Dandelion as

Theorem 3.15 (Dandelion Soundness).

Dandelion(f,p,I,ε,n) = true ⇒ (∀x. x ∈ I⇒ |f(x)− p(x)| ≤ ε)

The proof of Theorem 3.15 uses the triangle inequality to combine the theorem First Phase
Soundness (Theorem 3.5) with the theorem Second Phase Soundness (Theorem 3.13).

This concludes our discussion of how Dandelion automates the key steps of Harrison’s
proof. Before comparing Dandelion with state-of-the-art tools, we first take a closer look
at the performance of Dandelion’s HOL4 implementation.

3.6. Extracting a Verified Binary with CakeML

In general, computations performed in interactive theorem provers are said to be slower
than those in unverified languages. When performing first tests with Dandelion, using
HOL4’s native evaluation, we noticed that especially the Sturm sequence computation
required a significant amount of computation time.

Via manual inspection, we found that the computations are bottlenecked (in-part) by
the efficiency of real-number computations in HOL4. As every intermediate result is
computed exactly by HOL4, the size of the numbers that HOL4 uses for computations
grows quickly. Some numbers would span around six thousand digits, which lead to a
single real number operation taking up-to 6 hours to compute a result.

Under the hood, HOL4 treats real numbers as fractions during computation, stopping
at uncomputable terms, e.g., elementary functions. Every operation on these fractions
relies on an efficient implementation of natural number multiplications and we optimize
it by implementing Karatsuba multiplications.
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The key insight for this approach is that any fractional multiplication a
b ×

c
d can be

turned into multiplications of natural numbers with an additional sign:

a

b
×R

c

d
= sgn(

a

b
)×R sgn(

c

d
)×R

|a| ×N |c|
|b| ×N |d|

where sgn is the sign function, returning −1 for negative and 1 for positive inputs.
Our implementation of Karatsuba multiplication significantly improves performance of
Dandelions polynomial computations, e.g., for some tests we essentially halved the running
time of multiplying a polynomial by a constant. On a global scale, however, the effect on
Dandelion’s computations was smaller, but still noticable. For a degree three polynomial,
we reduced the overall evaluation time to validate the approximation error with Dandelion
from 47 to 43 minutes, and for a degree five polynomial, we went from 92 minutes to 69
minutes. We still found the performance of Dandelion to not yet be optimal.
To further improve performance of Dandelion, we chose to use the proof-producing

synthesis [2] implemented in the CakeML verified compiler [113]. The synthesis procedure
translates HOL4 functions into their CakeML counterpart, with an equivalence proof.
These translated CakeML functions are compiled into machine code with the CakeML
compiler and, as CakeML is fully verified, the machine code enjoys the same correctness
guarantees as its HOL4 equivalent.

During our earlier tests with the Karatsuba multiplication, we noticed that the Sturm
sequence computations in the second phase are the most computationally expensive task
of Dandelion. Therefore, we use CakeML’s proof-producing synthesis to extract a verified
binary for the computations described in Section 3.5. To communicate results of the
first phase with the binary, we implemented an (albeit unverified) lexer and parser that
reads-in results from the first phase.

3.7. Evaluation

We have described how we speed up Dandelions automatic validation of polynomial
approximations from Remez-like algorithms. In this section, we demonstrate Dandelion’s
usefulness with three separate experiments, showing that Dandelion fully automatically
validates

1. certificates generated by an off-the-shelf Remez-like algorithm(Section 3.7.1)

2. certificates for more complicated elementary function expressions (Section 3.7.2)

3. certificates for less-accurate techniques (Section 3.7.3)
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All the results we report in this section where gathered on a machine running Ubuntu
20.04, with an 2.7GHz i7 core and 16 GB of RAM. All runnning times are measured using
the UNIX time command as elapsed wall-clock time in seconds.

3.7.1. Validating Certificates of a Remez-like Algorithm

In our first evaluation, we show that Dandelion certifies accurate approximation errors
from an off-the-shelf Remez-like algorithm. We generate certificates by combining the
Daisy static analyzer with the Sollya approximation tool [25], and extend Daisy with a
simple pass that replaces calls to elementary functions with an approximation computed
by Sollya. As a Remez-like algorithm, we use the fpminimax [21] function in Sollya. We
evaluate Dandelion on numerical kernels taken from the FPBench benchmark suite [31],
and the benchmarks used by an unverified extension of Daisy with approximations for
elementary functions [60]. These benchmarks represent kernels as they occur in, e.g.,
embedded systems, and thus they benefit from custom polynomial approximations. The
original work by Izycheva et al. [60] synthesizes polynomial approximations whose target
error bounds are usually larger than those inferred by Sollya. Hence, Dandelion could
validate Daisy’s bounds as well, but for the sake of the evaluation we choose more
challenging, tighter bounds. For each benchmark, Daisy creates a certificate for each
approximated elementary function, amounting to a total of 96 generated certificates.

Sollya’s implementation of fpminimax can be configured to use different degrees for the
generated approximation and different formats for the coefficients of the approximation.
In our evaluation we approximate elementary functions with a degree 5 polynomial, storing
the coefficients with a precision of 53 bits. All input ranges used in the certificates are
computed by Daisy without modifying them, except for exp, where we disallow negative
intervals, i.e., if Daisy wanted to approximate on [−x, y], we change it to [0, y] as Dandelion
currently does not support negative exponentials. This simplification can be fixed by
straight-forward range reductions that are independent to the approximations computed
by Remez-like algorithms. For each such approximation, Daisy creates a certificate to be
checked by Dandelion.

The MetiTarski automated theorem prover [4] is a tool that provides the same level
of automation as Dandelion, but relies on a different technology for proving inequalities.
MetiTarski is based on the Metis theorem prover [57] and can output proofs in TSTP
format [112]. It relies on an external decision procedure to discharge some goals, and
for our experiments we used Mathematica. In general, MetiTarski checks real-number
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Function # Dandelion MetiTarski CoqInterval
Verified HOL4(s) Binary(s) Verified Time(s) Verified Time(s)

tan−1 2 1 11.62 20.36 2 6.80 2 1.74
cos 28 25 202.35 251.33 25 3.15 26 1.91
exp 21 18 39.58 212.54 10 5.35 20 1.58
log 8 0 0 0 5 4.99 8 1.68
sin 31 27 17.83 295.66 25 6.32 31 1.78

Total 90 71 67 87

Table 3.1: Overview of certificates validated with Dandelion, MetiTarski, and CoqInterval

inequalities that may contain elementary functions, thus we compare the number of
certificates validated by Dandelion to those that can be checked by MetiTarski.

Further, the CoqInterval package [82] proves inequalities about elementary functions in
the Coq theorem prover [116]. In contrast to Dandelion’s technique based on high-accuracy
Taylor polynomials and Sturm sequences, CoqInterval is based on interval arithmetic with
optional interval bisections and high-accuracy Taylor polynomials. Further, Dandelion
is verified in HOL4, while CoqInterval is implemented in Coq. To compare the two
approaches, our evaluation also includes the CoqInterval package. Our evaluation excludes
a similar approach formalized in Isabelle/HOL [56] because we could not come up with a
straight-forward translation of our certificates as inputs to the tool. We have manually
tested some of our benchmarks and expect it to produce results similar to CoqInterval.

Our results are given in Table 3.1. The left-most column of Table 3.1, contains the
name of the elementary function approximated by Daisy, and the second column, labeled
with a # contains the number of certificates with unique input ranges generated for the
elementary function. The next three columns, headed “Dandelion”, contain the number of
certificates validated by Dandelion, the average HOL4 running time for the first phase
in seconds, and the average running time of the binary for the second phase in seconds.
The next two columns, headed “MetiTarski”, contain the number of certificates validated
by MetiTarski, and the average running time in seconds. The final two columns, headed
“CoqInterval”, contain the number of certificates validated by CoqInterval, and the average
running time in seconds.

Our evaluation truncates Taylor series after 32 terms in approxAsPoly. In general, we
found six times the degree of the computed approximation to be a good estimate for when
to truncate Taylor series in Dandelion. Our use of 32 instead of 30 is a technical detail,
as some Taylor series require both the number of series terms n, as well as n

2 to be even.
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In general, the number of series terms has to be significantly higher than the degree of
the approximated polynomial to make the approximation error of the first phase almost
negligible.

Overall, we notice that each of the tools in our evaluation certifies a slightly different set
of approximations. In total, CoqInterval certifies most of the benchmarks, but Dandelion
successfully checks one cosine certificate that CoqInterval fails to check. While Dandelion
validates more certificates than MetiTarski, both MetiTarski and CoqInterval validate
certificates that are currently out of reach for Dandelion. This is mostly due to the first
phase of Dandelion. Even though we used general, widely known truncated Taylor series
for all supported elementary functions, Dandelion fails to validate certificates for the ln

function. We have inspected the generated certificates, and Dandelion cannot compute a
high-accuracy polynomial approximation for 5 of them because they do not satisfy the
precondition of Dandelion’s Taylor series. For the remaining 3 certificates, we ran into
issues with Sollya’s computation of the confidence intervals for the zeros. On a high-level,
the problem originates from the derivative of the error polynomial h(x) being very close
to 0, leading to a huge number of zeros found, i.e., computation not terminating within a
reasonable amount of time. To demonstrate that Dandelion still certifies errors for the ln

function, we add an example in Section 3.7.2.
While Dandelion cannot certify errors for the ln function in this part of the evalution,

this is not a conceptual limitation, as polynomial approximations are commonly paired
with an argument reduction strategy. While verification of these strategies is orthogonal
to validating results of an Remez-like algorithm, they could be used to reduce the input
range of the approximated elementary function into a range that Dandelion can certify.
More generally, we have done the heavy lifting of automating the computations and
implementing the general framework, such that adding more accurate Taylor series to
Dandelion amounts to mere proof engineering, modulo coming up with Taylor series in
the first place. For the certificates for tan−1, cos, sin, and exp, we notice that the average
running time is in the order of minutes, making certificate checking with Dandelion’s
verified binary feasible.

We compare the approximation errors recorded in the certificates with the infinity norm
computed by Sollya, which is the most-accurate estimate of the approximation error [24].
Overall, Dandelion certifies an approximation error in the same order of magnitude as the
infinity norm for 61 certificates. For the remaining 10, the error is a sound upper bound.
In general, infinity norm-based estimates are known to be the most accurate and their
verification requires more elaborate techniques than Sturm sequences [24]. Consequently
we would not expect Dandelion to be able to always certify infinity norms.
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Function Range Deg. Prec. ∞-norm Error HOL4 Binary

cos(x+ 1) [0, 2.14] 5 53 3.06E-5 3.06E-5 169 63
sin(x− 2) [−1, 3.00] 5 53 2.05E-3 2.91E-3 93 68
ln(x+ 1

10 ) [1.001, 1.1] 3 32 1.08E-7 1.08E-7 2775 1773
exp(x× 1

2 ) + cos(x× 1
2 ) [0.1, 1.00] 5 53 2.03E-9 4.45E-9 711 5

tan−1(x)− cos( 3
4 × x) [−0.5, 0.5] 5 53 1.18E-5 1.18E-5 24 2308

Table 3.2: Functions approximated with Sollya using fpminimax and certified with Dande-
lion

To measure the influence of the approximation degree and precision used by Sollya, we
also ran the evaluation for an approximation degree of 3 and 5, with precisions of 53 and
23 each. Overall, the running time significantly decreases when decreasing the degree from
5 to 3, going from average running times of minutes to average running times of seconds.
Decreasing the precision of the coefficients further speeds up evaluation, though not as
significant as decreasing the degree did. This suggests that higher coefficient accuracies
can easily be used for generating polynomials with Remez-like algorithms, and lower
degree polynomials should be preferred for fast validation.

3.7.2. Validating Certificates for Elementary Function Expressions

In our second evaluation, we demonstrate that Dandelion can also certify approximation
errors for complicated elementary function expressions. We validate with Dandelion
approximation errors for random examples involving elementary functions and arithmetic.
Polynomial approximations are again generated by Sollya.

An overview of our results is given in Table 3.2. The table shows the approximatied
function, then Sollya’s parameters (the input range, the target degree (Deg.), the target
precision (Prec.)), and then the infinity-norm (∞-norm) of the approximation. The final
columns summarize the Dandelion results, giving the certified approximation error, and
the running time in seconds of the first phase (HOL4) and the second phase (Binary).

Overall, we notice that the certified approximation error is on the same order of
magnitude as the infinity norm for all examples. We also notice that performance for
both phases varies across the different examples. For the first phase this is often due
to how the input ranges are encoded in the certificate. We noticed that HOL4 is very
sensitive to how the fractions representing real numbers are encoded when performing
computations. Similarly, performance of the second phase greatly varies depending on
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the complexity of the error polynomial computed by the first phase. We observe that
perfomance improves with both smaller degree polynomials, and smaller representations
of the polynomial coefficients.

The results in Table 3.2 exclude examples where two elementary functions are composed
with each other asn in, e.g., exp(sin(x − 1)). This is because Dandelion computes the
global high-accuracy approximation in the first phase via polynomial composition of an
approximation for exp and sin. While this is theoretically supported by Dandelion, we
found that the polynomial composition leads to an exponential blow-up in the degree
of the error polynomial. Even for the innocuously looking example exp(sin(x− 1)), the
second phase could not validate a polynomial approximation within 24 hours. This clearly
motivates the use of more elaborate Taylor series if compound elementary functions need
to be certified by Dandelion. In general, settings where elementary functions like those in
Table 3.2 are used could potentially be made more accurate and be validated faster with
custom Taylor series.

3.7.3. Validating Certificates for Simpler Approximation Algorithms

Remez-like algorithms are known to be the most accurate approximation algorithms.
However, less accurate approaches are still in use today, and as such interesting targets
for verification. Bréhard et al. [20] certify Chebyshev approximations in the Coq theorem
prover, where their approach requires some manual proofs. We demonstrate that Dande-
lion also certifies Chebyshev approximations on some random examples by computing
Chebyshev approximations with Sollya’s function chebyshevform. The results are shown
in Table 3.3.

Again, we first give Sollya’s parameter and the infinity norm, then we give the error
certified by Dandelion, and the execution times for the first and second phase.

Table 3.3 also includes the approximation certified by Harrison [53], labeled with a ∗.
The polynomial has degree 3, but we leave the precision empty as it is not generated by
Sollya, and we do not provide an infinity norm. The only difference to the proof from
Harrison is that we prove the bound only for positive x, as Dandelion currently does not
handle exponentials on negative values. The lower bound of the range is 0.003, instead
of 0 to rule out a 0 on the lower bound (as exp(x) − 1 = 0 for x = 0), which we must
exclude by Theorem 3.14. Harrison’s manual proof of the polynomial approximation then
reduces to a single line running Dandelion on the encoding.
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Function Range Deg. Prec. ∞-norm Error HOL4 Binary

cos(x) [0, 2.14] 5 53 3.17E-7 3.22E-7 169 63
sin(x+ 2) [−1.5, 1.5] 5 53 4.47E-4 7.60E-4 142 138
sin(3× x) + exp(x× 1

2 ) [0, 1] 3 53 2.45E-2 2.48E-2 54 1897
exp(x)− 1∗ [0.003, 0.01] 3 2−33.2 133 <1

Table 3.3: Chebyshev approximations certified with Dandelion, Harrison’s example labeled
with ∗

3.8. Related Work

Throughout this chapter, we have already hinted at immediate related work for Dandelion.
In this section, we explain the key conceptual differences between Dandelion and its
immediate related work and put Dandelion into the greater context. In general, Dandelion
touches upon two key research areas in interactive and automated theorem proving:
techniques for approximating elementary functions and techniques for proving theorems
involving real-numbered functions.

Approximating Elementary Functions. The work on approximating elementary
functions can be distinguished among two axes: whether or not the work provides
rigorous machine-checked proofs, and whether the work is fully automated or requires
user intervention.

Fully automated, rigorous machine-checked proofs, similar to Dandelion are provided
by the work by Bréhard et al. [20]. They develop a framework for proving correct
Chebychev approximations of real number functions in the Coq theorem prover [116].
A key difference to Dandelion is that the technique cannot certify approximations of
Remez-like algorithms, which can in general provide more accurate approximations. Also
developed in the Coq theorem prover, Martin-Dorel and Melquiond [83] verify polynomial
approximations using the CoqInterval [82] package. They develop a fully automated
tactic for proving approximations inside floating-point mathematical libraries correct and
we have compared Dandelion’s results with those of CoqInterval in Section 3.7. The key
technical difference is that the work by Martin-Dorel and Melquiond uses a combination
of interval arithmetic, Taylor approximations, and floating-point computations to prove
approximations, while Dandelion relies on Sturm sequences. An approach similar to
CoqInterval was also formalized in Isabelle/HOL by Hölzl [56].
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For manual proofs, versions of the exponential function have been verified by Harri-
son [51], and Akbarpour et al. [3]. The manual proof by Harrison [53] layed out the
foundations for Dandelion. Harrison’s work has also been extended by Chevillard et
al. [24]. Instead of verifying approximation errors for polynomials, they use so-called sum-
of-squares decompositions [52] to certify infinity norm computations. A major limiting
factor for their work was finding accurate enough Taylor polynomials which we found to
not be a major issue for our approach.

Coward et al. [28] use the MetiTarski automated theorem prover [4] to verify accuracy
of finite-precision hardware implementations of elementary functions. MetiTarski provides
proofs in machine-readable form using the TSTP format [112] instead of being developed
inside an interactive theorem prover like HOL4. A major conceptual difference is that
the verification done by Coward et al. reasons about bit-level accuracy of the hardware
implementation, while Dandelion reasons about real-number functions and polynomials.
Together with a verified roundoff error analysis like FloVer [12], Dandelion could be
extended to verify finite-precision implementations of elementary functions, and together
with Daisy [60] verification could possibly be lifted to entire arithmetic kernels.

A different style of approximations without rigorous machine-checked proofs is provided
by Lim and Nagarakatte [77]. Instead of computing specialized polynomial approximations,
they focus on correctly-rounded, general purpose approximations. Such approximations
are not build for specific use-cases, but rather meant to replace the functions provided in
mathematical libraries. At the time of writing, their approach is not formally verified, but
they do provide a pen-and-paper correctness argument for their code generation. The CR-
libm [32] library also provides unverified alternatives of correctly rounded mathematical
libraries, and Muller [94] gives a general overview of the techniques for implementing
elementary functions.

(Automated) Real-Number Theorem Proving. Dandelion heavily relies on
HOL4’s support for real-number theorem proving. Below we list some alternatives
for proving properties of real-numbers in both interactive and automated theorem proving
systems. In the HOL-family of ITP systems, Harrison [52] has formalized sum-of-squares
certificates for the HOL-Light [117] theorem prover. His approach relies on semidefinite
programming to find a decomposition of a polynomial into a sum-of-squares polynomial.
Both Isabelle/HOL and PVS have been independently extended with implementations
of Sturm sequences [39, 97, 96]. Their main focus is not on verification of polynomial
approximations, they rather use Sturm sequences to prove properties about roots of
polynomials, non-negativity, and monotonicity.
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Previously we have already mentioned the MetiTarski automated theorem prover [4],
as an example of an automated theorem prover for real-numbered functions. How-
ever, MetiTarski is not the only automated prover for real-numbered functions. Real-
numbered functions are also supported by, e.g., dReal [41], and z3’s SMT theory for
real-numbers [93].

3.9. Discussion

We have presented the first contribution of this thesis, Dandelion. Dandelion certifies
approximation errors for polynomial approximations of elementary functions and supports
inputs from the known most-accurate Remez-like algorithms. Through its verified binary,
Dandelion certifies bounds within a reasonable amount of time.
The next chapter combines Dandelion’s results with a verified roundoff error analysis.

We extend CakeML with a proof-producing that translates a real-numbered elementary
function into floating-point machine code with accuracy guarantees.
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Verified Generation of libm Kernels

This chapter contains new content. The proofs and implementation have been performed
for the thesis and are not published elsewhere. Both the writing and formal development
have been performed by me.

4.1. Introduction

An integral part of any floating-point implementation in a compiler is a library of
mathematical functions (short libm). A libm commonly implements elementary functions
like sin, cos, and exp. In general, a function is implemented in a libm if it cannot be
translated directly into floating-point hardware instructions, and therefore it must be
implemented in software instead.

Before our work, the CakeML compiler did not provide a library of mathematical
functions. CakeML only supports floating-point primitives that have a one-to-one corre-
spondence with hardware instructions, i.e., addition, subtraction, multiplication, division,
square root, and absolute values.

Implementating a libm for an unverified compiler is already a tricky task on its own.
A key challenge in implementing an elementary function like, e.g., sin, is making sure
that the libm implementation returns a result that is as-close-as-possible to the idealized,
real-numbered result. The work by Lim et al. [77] is the most recent work on “correct-
by-construction” libm implementations. Their tool, Rlibm, claims to generate code that
computes the correctly-rounded result of mathematical functions for different target
formats; i.e., the result of running one of their libm implementations is the most accurate
result that can be computed for a particular format. However, verification of the results
of Rlibm is still a major challenge.

In this work, we relax the stringent correctness requirement of Rlibm, and say that for
CakeML any polynomial implementation of an elementary function is fine as long as we

49



Chapter 4: Verified Generation of libm Kernels

can certify its accuracy with a rigorous machine-checked proof. Further, while Rlibm
generates general-purpose implementations, we focus on polynomial approximations that
are designed for a specific use-case; they must only be correct for a limited set of inputs.

The key challenge to verify a particular use-case-specific polynomial approximation in
CakeML is two-fold: First, the correctness proof must relate a real-valued polynomial
approximation to its elementary function with a proof bounding the approximation
error; second, the proof must relate a floating-point polynomial implementation to the
aforementioned real-valued polynomial approximation.
A first solution addressing this key challenge is presented by Appel and Bertot [5].

Their approach verifies numerical implementations using the VST framework [7] and
Flocq [18] in the Coq theorem prover. To this end, they verify a C-implementation of a sqrt
algorithm by first manually proving a correspondance between the C-code implementation
and a functional model using VST. Then, the functional model is verified with respect to
IEEE-754 floating-point semantics using Flocq and Gappa [37]. With the CompCert [74]
compiler, the verified C-implementation can be compiled to machine code. In general,
the approach by APpel and Bertot could be used to verify libm implementations, but,
the approach still involves a large chunk of manual proof work.
A key takeaway point of the work by Appel and Bertot is that they split the overall

correctness into proofs about the C-code implementation of a floating-point polynomial,
and proofs relating a polynomial implementation to its real-valued counterpart. Following
this separations of concerns, we want to automate both steps inside the CakeML compiler
to automatically generate use-case specific implementations of elementary functions.

With Dandelion (Chapter 3), we can automatically prove error bounds for real-valued
poynomials and elementary functions, and with the FloVer tool (Section 2.4) we can
validate finite-precision roundoff error bounds, automating the most complicated parts.
The only piece missing from the puzzle is a relation between FloVer’s idealized finite-
precision semantics, and CakeML’s floating-point semantics.
In previous work, we have shown that floating-point tools generally benefit from

being used together [8] and therefore, our technical key idea is to combine the outputs
of Dandelion and FloVer and pairing them with a simulation proof relating FloVer’s
idealized IEEE-754 semantics to CakeML floating-point arithmetic. To this end, we
implement libmGen, the first fully automated proof-producing compiler for libm function
implementations as a CakeML extension.

Dandelion and FloVer were both designed to certify results of unverified tools, and do
not compute the results themselves. For Dandelion, this dependency cannot be resolved,
and we will necessarily rely on a generator for polynomial approximations. For FloVer,
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cos_example = <|

transc := cos (x);

poly := [

4289449735 / (2 pow 32); (* ∼ 0.9987 *)

139975391 / (2 pow 33); (* ∼ 0.0162 *)

-2408138823 / (2 pow 32); (* ∼ -0.5606 *)

2948059219 / (2 pow 35) ]; (* ∼ 0.0857 *)

eps := 582015 / (2 pow 31)−1; (* ∼ 2.71 * 2−4 *)

iv := [ ("x", ( 0.1 , 1))]; |>

Figure 4.1: Example certificate for cos approximation; for readability we translate con-
stants to reals in comments

however, we notice that the (unverified) analysis of finite-precision errors and FloVer’s
validation steps practically coincide. We remove the dependency on an external unverified
analysis to generate certificates with an extension of FloVer that generates (unverified)
analysis certificates. These certificates are then validated with FloVer’s verified certificate
checking pipeline.

Contributions. In summary, this chapter contributes:

• an extension of FloVer to generate (unverified) analysis certificates;

• an end-to-end simulation relating Dandelion’s real-valued elementary functions to
CakeML-produced floating-point machine code;

• a fully automated proof-producing method that implements libm functions from a
Dandelion certificate.

4.2. Overview

Before diving into the details of how libmGen is implemented and verified, we give a
high-level overview of how our proof-producing compiler libmGen works. As an example,
we implement the elementary function cos(x) on the interval [0.1, 1] with a degree 3
polynomial in CakeML. Figure 4.1 shows the Dandelion certificate for our example. In
the certificate in Figure 4.1, transc is the approximated elementary function, poly is the
polynomial approximation computed with Sollya [25], eps is an unverified bound on the
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fun cos x = 0x3FEFF579E0E00000 (* ∼ 0.9987 *) +

(x * (0x3F90AFB5BE000000 (* ∼ 0.0162 *) +

(x * (0xBFE1F12908E00000 (* ∼ -0.5606 *) +

(x * 0x3FB5F6FA0A600000 (* ∼ 0.0857 *))))))

Figure 4.2: CakeML program generated automatically by libmGen for the example; for
readability we translate constants to reals in comments

approximation error, and iv describes the input constraint. From this certificate, libmGen
automatically generates the CakeML source code implementation in Figure 4.2, where
constants are the coefficients of the polynomial from Figure 4.1 rounded to 64-bit double
words.

In addition to generating CakeML source code, libmGen also proves a specification
theorem relating executions of the generated CakeML code to the real-valued cos function:

Theorem 4.1 (CakeML specification of cos ).

0.1 ≤ w ≤ 1 ∧ finite w ⇒

evaluate cosCode [w] = v ∧ |v − cos(w)| ≤ eps + δ

As the approximation and roundoff errors inferred by FloVer and Dandelion are only valid
for arguments within the range specified in Figure 4.1, Theorem 4.1 assumes that the
program is only run on inputs within these constraints. Further, the theorem assumes
that input values are finite floating-point double constants, i.e., no exceptional values like
NaN or ±∞ as this would invalidate the result of the roundoff error analysis. The theorem
shows that the generated CakeML-code (Figure 4.2) always returns a floating-point value
v and that the difference between floating-point value v and the real-valued cos function
is upper bounded by the approximation error from the certificate (eps) plus the roundoff
error δ.
To prove Theorem 4.1, libmGen performs three separate steps, which we illustrate

on a high-level in Figure 4.3. Given a Dandelion certificate consisting of an elementary
function f , polynomial approximation p, input constraints I, and an approximation error
ε, libmGen first validates the certificate with Dandelion. Second, the polynomial from the
certificate is translated into FloVer’s input expressions using function poly2FloVer, and
libmGen automatically infers and validates a roundoff error bound using FloVer. Third,
libmGen translates FloVer’s floating-point expression into CakeML code using function
flover2CML, and automatically proves a program specification exactly as in Theorem 4.1.
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elementary function 
poynomial approximaiton 

input constraints 
approximation error ɛ

Dandelion

poly2FloVer( )

real-valued expression 
floating-point expression 

CakeML code 

floVer2CML( )

FloVer

program specification

Figure 4.3: Overview of components of libmGen

Our tool libmGen should compute a verified roundoff error analysis result without
relying on an additional external tool to generate an analysis certificate. Therefore, we
extend FloVer with an unverified implementation of a roundoff error analysis that encodes
its result as a certificate for FloVer’s checking pipeline. In libmGen, we validate this
certificate using FloVer’s verified certificate checking pipeline. While the translation
functions poly2FloVer and flover2CML have straight-forward implementations, the crux
of libmGen lies in proving the correct simulations for the translation functions to prove
the program specification fully automatically. We have already presented the soundness
proofs for Dandelion (at the end of Section 3.5) and FloVer (Section 2.4) and thus we
will not go into further details here.

In the rest of this chapter, we will walk, step-by-step, through the simulations, explaining
how libmGen automatically translates elementary functions approximations into CakeML
source code with accuracy proofs (Section 4.3). Afterwards, we show in our evaluation
how libmGen generates CakeML code for some small elementary function examples
(Section 4.4).

4.3. Simulations in libmGen

Computationally, libmGen simply runs the tools we have presented so far one after
another. We only extend FloVer with unverified certificate generation to avoid relying
on an additional external tool. To implement the unverified certificate generation, we
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have simply copied the validation functions of FloVer and replaced their checking part
with code that returns the computed values. The key technical challenge of libmGen is to
automatically prove a program specification relating double floating-point machine code
to real-numbered elementary functions.

On a high-level, when implementing an elementary function, libmGen automatically
instantiates the following general theorem:

Theorem 4.2 (libmGen specification).
Let f be an elementary function defined on range I, p a polynomial approximation,
and y an element of I, then

(1) max
x∈I
|f(x)− p(x)| ≤ ε ∧

(2) (poly2FloVer(p), [x 7→ [y]real]) ⇓real vr ∧

(poly2FloVer(p), [x 7→ y]) ⇓double vf ∧

(3) |vr − vf | ≤ δ ⇒

(4) evaluate (floVer2CML (poly2FloVer p ), y) = v ∧

|v − f([y]real)| ≤ ε+ δ

Theorem 4.2 assumes that ε is the verified approximation error for |f(x)− p(x)| (1), the
polynomial p translated to FloVer can be run under real-numbered and floating-point
semantics (2), and δ is the verified roundoff error of the translated polynomial (3). From
these assumptions, the theorem shows (4) that the CakeML code generated from the
FloVer polynomial can be successfully run on input value y to obtain the result value v.
Further, the difference between v and the result of evaluating the elementary function
f on the real-number equivalent of y is upper bounded by ε + δ, i.e., the sum of the
approximation error and the roundoff error.

When generating a CakeML implementation for a Dandelion certificate, libmGen auto-
matically generates proofs for assumptions (1), (2) and (3) of Theorem 4.2. Assumption
(1) is proven by running Dandelion on the input certificate; and assumptions (2) and (3)

are proven by translating the polynomial to FloVer, generating an unverified analysis
certificate for the translated polynomial, and checking the certificate using FloVer.

We prove Theorem 4.2 once and for all and the proof relies on two key simulations.
The first simulation relates Dandelion’s idealized real-numbered polynomials to their
translation to FloVer via poly2FloVer:
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Theorem 4.3 (poly2FloVer Bisimulation).
Let p be a polynomial, then

p(v) = r ⇔ (poly2FloVer p, [x 7→ v]) ⇓real r

Theorem 4.3 shows that the real-valued polynomial p and its translation to FloVer must
always return the same value if the translated expression is evaluated under real-number
semantics (⇓real) with the free variable x bound to the input v of the polynomial. We
have proven Theorem 4.3 once and for all via an induction on p, i.e., we show Theorem 4.3
first for the constant 0 polynomial, and in the induction step, we show Theorem 4.3 for
p(y) = c+ y ∗ q(y), assuming the theorem holds true for q(y).
The second simulation relates FloVer’s finite-precision double expressions with their

translation to CakeML double floating-point code via floVer2CML:

Theorem 4.4.
Let e be a real-numbered FloVer expression without any cast operations, A an
unverified roundoff error analysis result, and I an input constraint, and env a
CakeML runtime environment binding the free variables of e within the constraints
from I, then

FloVerCheck(e,A, I) = > ⇒

∃vdouble vreal δ.

(e, toFloVerEnv env) ⇓real vreal ∧

evaluate(floVer2CML e, env) = vdouble ∧

A [e] = δ ∧ |vdouble − vreal| ≤ δ

Theorem 4.4 restricts the FloVer expression e to not contain cast operations. This
is necessary as while FloVer supports mixed-precision computations, at the time of
writing the thesis CakeML supports only 64-bit double floating-point arithmetic. Further,
Theorem 4.4 assumes that FloVer has validated the analysis result A to establish the
roundoff error bound δ. The roundoff error bound δ relates the execution of the CakeML
code produced by fv2CML with the idealized real-numbered semantics of the FloVer
expression e.

To relate the CakeML code with the real-number semantics of FloVer, we use FloVer’s
relation to IEEE-754 floating-point semantics as the middle ground. FloVer’s idealized
finite-precision semantics are related to FloVer’s IEEE-754 semantics with a simulation
proof, and the IEEE-754 semantics are related to CakeML source code floating-point
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semantics with a simulation proof as well. Proving the second simulation required some
additional caution because of the interaction of evaluation contexts and double rounding.
The main complications of the proof arises in the leaf nodes: loading a variable from the
execution environment, and rounding a constant.

When loading a variable, FloVer’s semantics model the result as the real-numbered value,
perturbed by a constant which is smaller than or equal to the machine epsilon. While
sound, FloVer’s model is inaccurate and thus over-approximates. On the contrary, CakeML
models loading a floating-point constant as a lookup of a 64-bit word in the execution
environment without any additional error. To fix this discrepancy between FloVer and
CakeML, our simulation proof assumes that all values loaded from the environment
are already rounded, i.e., their perturbance is 0. This assumption is not a limitation
of libmGen as we discharge it later when proving the whole-program specification by
instantiating the environment with CakeML’s runtime execution environment, where all
values must have been rounded anyway.

The key complication when rounding a constant is that HOL4 did not prove an absolute
general error bound for denormal numbers. We extended the formalization of IEEE-754
arithmetic in HOL4 with a proof of an absolute error bound for denormal numbers.

4.4. Evaluation

We have explained libmGen’s key components and given an overview of the simulation
proofs required for libmGen to automatically implement elementary functions with
polynomial approximations in CakeML source code. In this section we want to assess the
practicality of libmGen by answering two central questions:

1. Is libmGen applicable to different elementary functions?

2. Are libmGen’s accuracy bounds useful?

To the best of our knowledge, there is at this point in time no tool that focuses on
verifying custom polynomial approximations inside a verified compiler. In contrast to
libmGen, Rlibm and other related tools focus on providing global approximations that
work for all possible inputs. Hence the approximation is only generated (and verified)
once. For libmGen, its use-case lies in producing a custom approximation for an end-user
in different settings, so we consider Rlibm and related tools not an appropriate point of
comparison. The alternative approach by Appel and Bertot is not fully automated and
thus not a useful comparison either.
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Function Input Range Runtime Approx. Err. Roundoff Err.

cos(x) [0.1, 1] 2186 2.710E-4 6.859E-16
sin(x) [0.1, 1] 2832 2.203E-4 6.781E-16

tan(x)−1 [−0.5, 0.5] 2551 4.416E-4 3.196E-16

Table 4.1: Results of compiling example functions to CakeML machine code

Instead, in our evaluation we run libmGen on some simple, random degree three
polynomials. We measure the overall running time of libmGen for translating the
elementary function to CakeML machine code and proving a specification proof including
accuracy bounds. This is merely to assess libmGen’s performance, in a real-world scenario,
a custom polynomial approximation is use-case-specific and thus libmGen would be used
to verify parts of a larger program. We further report the accuracy bounds computed by
libmGen.

All of our experiments were performed on a computer running Ubuntu 20.04 with an
i7-6820HQ CPU, clocked at 2.7 GHz with 16 GB of RAM. The main reason why we limit
the evaluation to polynomials of degree three is to make sure that Dandelion can certify
the approximation error within HOL4 without having to resort to using its binary. As we
discussed in Section 3.6, Dandelion uses a binary extracted with CakeML to speed-up
computations, but this binary is not proof-producing. Hence we cannot use it as part of
the libmGen pipeline1.

To answer both questions of our evaluation we compile polynomial approximations of
sin, cos, and tan(x)−1 to CakeML code and we give an overview of the results in Table 4.1.
The table shows first the function being implemented by libmGen (column “Function”),
then the input range on which the function is approximated (column “Input Range”), the
overall running time of libmGen in seconds (“Runtime”), the approximation error from
implementing the elementary function as a polynomial (“Approx. Err”) and the roundoff
error from implementing the polynomial in floating-point arithmetic (column “Roundoff
Err”).

For all of the example functions, libmGen takes between 30 minutes (1800 seconds) and
an hour (3600 seconds). This time is still reasonable as while one may generate polynomial
approximations frequently during development, verification with libmGen would only have

1Technically, we could use Dandelion’s binary as an external oracle in HOL4 and tag each theorem
appropriately. But this would clutter all our theorems with an additional tag that the binary must
correctly implement the Dandelion specification from HOL4.
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to be done once, when code gets closer to production stages. We notice that the combined
error for all our examples is dominated by the approximation error of polynomial. This
suggests that higher degree polynomials can also be compiled and verified in libmGen with
reasonable error bounds, as the roundoff error is still negligible. Overall, the performance
bottleneck of libmGen is Dandelion’s verification and with improvements in Dandelion’s
verification algorithm it should be possible to compile polynomials of higher degree into
CakeML code with libmGen in the future.

4.5. Related Work

We have demonstrated how libmGen automatically generates CakeML source implemen-
tations for elementary functions. In this section, we put libmGen into a greater context
and compare it with existing approaches to verified generation of mathematical functions.
From a foundational point of view, libmGen shares its related work with Dandelion
(Section 3.8) and thus we do not repeat it here. Instead, we focus on approaches that are
more closely connected to a (verified) compiler.

To generate the roundoff errors, we relied on FloVer [12], however, this was merely for
the convenience of the tool being already implemented in HOL4 and the thus straight-
forward connection to CakeML. Other solutions could be used equally well [120, 37, 111].
The exact same reasoning also applies to Dandelion [11]. For mere convenience, we chose
a HOL4 tool over implementations in other theorem provers [82, 52, 39].

One of the key aspects of libmGen is that it provides correctness proofs relating the
mathematical function to its source code implementation. To the best of our knowledge,
the only recent approach that takes a similar route to libmGen is the one by Appel and
Bertot [5]. Their approach has recently been extended to verify implementations of ODE’s
in CompCert C [73] by Kellison and Appel [64].

If we leave behind machine-checked proofs, approaches like Rlibm [77], the CoreMath
project [110], and CRLibm [33] claim to provide correctly rounded, i.e., most accurate,
implementations of different elementary functions. While being the most accurate imple-
mentations, their code cannot be used straight-forwardly in a verified compiler without
the overhead of first proving their accuracy manually.

All of the above tools provide correctly rounded software implementations. Orthogonally,
one can also generate hardware implementations for floating-point arithmetic, as is done
in, e.g., the FloPoCo tool [38]. While no formal guarantees about FloPoCo are provided
by the tool itself, the generated hardware descriptions could potentially be verified using
the tooling built around CakeML’s verified hardware platform, called Silver [78].

58



Chapter 4: Verified Generation of libm Kernels

4.6. Discussion

We have presented libmGen, the second contribution of the thesis. LibmGen is a proof-
producing compiler from real-numbered elementary functions to floating-point machine
code. The key feature of libmGen is that it proves a specification relating the elementary
function to its machine-code implementation via the approximation error and the roundoff
error. This concludes the first extension of the thesis.
In the next chapter we will look at verified optimization of floating-point arithmetic.

To this end, we first revisit how floating-point semantics are implemented in a verified
compiler in the first place.
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CHAPTER 5

Icing

Supporting Fast-math Style Optimizations

in a Verified Compiler

This chapter is based on our paper titled Icing - Supporting Fast-math Style Optimiza-
tions in a Verified Compiler [13], which has been published at CAV’19. The work is a
collaboration with Eva Darulova, Magnus Myreen, and Zachary Tatlock. The formal
development has been done by me with feedback from all co-authors. They also helped
with editing the paper and provided feedback on the writing.

• Section 5.1 is a new introduction written for the thesis.

• Section 5.2 is new and gives a more high-level overview of the contributions.

• Section 5.3 and Section 5.4 are the original versions from the CAV’19 paper with
minor rewordings.

• Section 5.5 is an updated version of the CAV’19 paper, specifically, minor rewordings
have been applied throughout, and the explanation for the NaN special-value check
has been extended.

• Section 5.6 is the original version from the CAV’19 paper.

• Section 5.7 is new and puts Icing into the greater context of the thesis work.

5.1. Introduction

The second major contribution of the thesis extends CakeML with a floating-point
optimizer. Before we can look at the implementation of the optimizer, we must revisit
how CakeML, and verified compilers in general, implement floating-point arithmetic.
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Both CakeML and CompCert implement floating-point arithmetic very conservatively.
They necessarily implement strict IEEE-754 [58] floating-point arithmetic, which requires
the compiler to preserve the bit-level accuracy of floating-point code. This requirement
limits floating-point optimizations to very few conservative ones like, e.g., replacing 2 * x

with x + x. As such, the compilation of floating-point arithmetic in a verified compiler
is often said to preserve the literal meaning of the program; the program is not altered
by the compiler and translated one-to-one into machine code, preserving its bit-level
accuracy.
This strict implementation in verified compilers has a striking dissimilarity to the

implementation of floating-point arithmetic in unverified compilers like GCC [40] and
LLVM [70]. Both GCC and LLVM, when given the --ffast-math compiler flag, aggre-
sively optimize floating-point programs to improve their performance, and we call these
optimizations fast-math-style optimizations. When optimizing floating-point code, GCC
and LLVM generally reorder operations, exploit real-valued identities (like 0 ∗ x = 0), and
perform fma -introduction, where they replace a multiplication and an addition ((x∗y)+z)
with a more efficient fused-multiply-add (fma) hardware instruction. A key fact about all
of these fast-math-style optimizations is that they usually do not preserve the bit-level
accuracy of programs.

These performance-oriented optimizations used by GCC and LLVM are only one side of
the spectrum. On the other end, we have accuracy improving optimizations, e.g., accurate
summation formulas [54], and, in general, tools that improve accuracy by restructuring the
program [101]. Exactly as for performance-oriented optimizations, these accuracy-oriented
optimizations do not preseve the bit-level accuracy of programs, and thus are currently
out-of-scope for verified compilers. One possible solution to both of these problems is to
base implementations of floating-point arithmetic in verified compilers on a semantics
other than IEEE-754.

In general, as floating-point arithmetic necessarily approximates real-number arithmetic,
a programmer should always be able to specify a global accuracy bound for a floating-point
program. We further argue that if a programmer optimizes their floating-point code with
fast-math-style optimizations they do not care about preserving the bit-level accuracy of
their program. Now if we are to redesign IEEE-754 floating-point semantics, we must
ensure that the semantics gives the compiler enough freedom to perform both accuracy
and performance-oriented optimizations, but also allows to preserve bit-level accuracy if
required.

To model this choice, we argue that the floating-point semantics in a verified compiler
should be non-deterministic, to ensure that all possible optimization choices of the
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compiler can be modeled. But, we also want to ensure that the user has control over
which optimizations are applied by the compiler. For example, the fma instruction may not
be available on a target architecture and thus should not be introduced by the compiler.
Thus the semantics should also be parametrized by the optimizations that the compiler is
allowed to perform.
In this chapter, we present a proof-of-concept language, Icing, with a novel non-

deterministic floating-point semantics. The Icing floating-point semantics supports fast-
math-style optimizations in a verified compiler and provides fine-grained control over which
optimizations are applied where. To this end, Icing has syntactic scoping annotations that
allow programmers to selectively optimize parts of a program, or disable them completely.
Further, the semantics has a global list of allowed optimizations, which makes it easy to
determine which optimizations the compiler may apply.

We demonstrate that the Icing language can handle fast-math-style optimization similar
to those used by GCC and LLVM by implementing and verifying three reference optimizers:
The first optimizer, called the IEEE-translator, preserves the IEEE-754 bit-level accuracy,
and ensures that no optimizations may be applied by the compiler, providing a safe
fallback. The second optimizer, called the greedy optimizer, greedily applies a set of
optimizations (with a correctness proof), mimicking the behavior observed by end-users of
unverified compilers. The third optimizer, called the conditional optimizer, demonstrates
how additional optimization criteria can be integrated into the global optimization process.

Contributions. In summary, this chapter contributes:

• the proof-of-concept Icing language with a novel non-deterministic floating-point
semantics supporting fast-math-style optimizations;

• an implementation and formalization of Icing and its semantics in the HOL4 theorem
prover;

• an implementation and formalization of the three reference optimizers.

In the remainder of this chapter, we first discuss the key ideas of Icing on a high-level
(Section 5.2), then we define Icing’s syntax, the floating-point rewriter, and semantics
(Section 5.3). Next, we model the behavior of existing verified and unverified compilers
with the IEEE-translator and the greedy optimizer (Section 5.4), and we define our
conditional optimizer that incorporates additional criteria (Section 5.5). In Section 5.6,
we put the Icing work into a broader context, and we conclude this chapter with a
discussion in Section 5.7.
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5.2. Key Ideas of the Icing Language

Before diving into the formalization of Icing, we first briefly review its three key ideas:
giving the user fine-grained control over where optimizations are applied, using non-
determinism to model floating-point optimizations, and lazily evaluating floating-point
expressions to carry syntactic structure into the semantics.

Fine-Grained Control. Unverified compilers, like GCC and LLVM, provide fast-math-
style optimizations as a global on-off switch. To use the optimizations, the compiler
is invoked with the additional parameter -ffast-math, which enables fast-math-style
optimizations for all of the program. There is no way of restricting optimization to a part
of the program. While this may be fine for an unverified compiler, we argue that in a
verified compiler users must be able to both guarantee IEEE-754 compliant behavior in,
e.g., mission-critical manually-verified code, as well as being able to optimize parts of the
program, e.g., codes that are susceptible to input errors and are designed to be robust
against bounded noise. Therefore, the first key idea of Icing is to extend floating-point
arithmetic expressions with a special annotation, opt:, that restricts where optimizations
can be applied by the optimizer.

Non-deterministic Floating-Point Semantics. Fast-math-style optimizations are
easy to define, as they can be expressed as local, directed rewrites. However, the reasoning
why they are applied by the compiler can vary between just plain “greedy” optimization
strategies and elaborate techniques relying on additional information computed via static
analysis. As such, we want our new floating-point semantics to be able to handle different
optimization strategies, as well as settings where no optimization is applied at all.

Therefore the Icing semantics optimizes floating-point programs non-deterministically
while evaluating. Optimizations are chosen from a global set of allowed optimizations.
With this non-determinism, we can model IEEE-754 executions, as well as prove correctness
for arbitrary optimization strategies, as long as the strategy uses only optimizations from
the global set of allowed optimizations.

Lazy Evaluation of Floating-Point Expressions. Eager evaluation of floating-point
expressions immediately turns expressions like 1.0f + x into a floating-point word based
on the value of x. A side-effect of such an eager evaluation is that the resulting floating-
point word retains no information about the structure of the original expression. To
non-deterministically optimize an expression in the semantics, we must make sure that
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w: 64-bit floating-point word x: String n ∈ N b ∈ {true, false}

� ∈ {−, sqrt} ◦ ∈ {+,−, ∗, /} � ∈ {<,≤,=}

e1, e2, e3 ::= w | x | [e1, . . .] | e1[n] | � e1 | e1 ◦ e2 | fma(e1, e2, e3) | opt : (e1) |

letx = e1 in e2 | if c then e1 else e2 | Map(λx.e1)e2 | Fold(λx y.e1)e2e3

c ::= b | isNaN e1 | e1� e2 | opt : (c)

Figure 5.1: Syntax of Icing expressions

the structure of floating-point expressions is preserved. Preserving the structure of a
floating-point expression allows the semantics to decide whether or not an optimization
should be applied. We solve this problem by lazily evaluating floating-point expressions
in Icing, representing them as a tree with floating-point words as leafs.

5.3. The Icing Language

We start our discussion of Icing by defining its syntax and semantics to support fast-math-
style optimizations in a verified compiler. Icing is a prototype language whose semantics
is designed to be extensible and widely applicable instead of focusing on a particular
implementation of fast-math-style optimizations1. This allows us to provide a stable
interface as the implementation of the compiler changes, as well as supporting different
optimization choices in the semantics depending on the compilation target.

5.3.1. Syntax

Icing’s syntax is shown in Figure 5.1. In addition to arithmetic, let-bindings and condition-
als, Icing supports fma instructions, lists ([e1 . . .]), projections (e1[n]), and Map and Fold

as primitives. Conditional guards consist of boolean constants (b), binary comparisons
(e1 � e2), and an isNaN predicate. Predicate isNaN e1 checks whether e1 is a so-called
Not-a-Number (NaN) special value. Under the IEEE-754 standard, undefined operations
(e.g., square root of a negative number) produce NaN results, and most operations propagate
NaN results when passed a NaN argument. It is thus common to add checks for NaNs at the
source or compiler level.

1As we show in the next chapter (Chapter 6), we have fully integrated a slightly revised version of the
Icing language with the CakeML compiler. Here, we focus on the key conceptual design decisions of
the language, which apply to the CakeML version as well.
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Name Rewrite Precondition

1 fma introduction x * y + z → fma (x,y,z) application precond.
2 ◦ associative (x ◦ y) ◦ z → x ◦ (y ◦ z) application precond.
3 ◦ commutative x ◦ y → y ◦ x application precond.
4 double negation - (- x) → x x well-typed

5 ∗ distributive x * (y + z) → (x * y) + (x * z)
no control dependency
on optimization result

6 NaN check removal isNaN x → false x is not a NaN

Table 5.1: Rewrites currently supported in Icing (◦ ∈ {+, ∗})

We use the Map and Fold primitives to show that Icing can be used to express programs
beyond arithmetic, while keeping the language simple. Language features like function
definitions or general loops do not affect floating-point computations with respect to
fast-math-style optimizations and are thus orthogonal.

The opt: scoping annotation implements one of the key features of Icing: floating-point
semantics are relaxed only for expressions under an opt: scope. In this way, opt: provides
fine-grained control both for expressions and conditional guards.

5.3.2. Optimizations as Rewrites

Before we turn to explaining the semantics of Icing, we have to first look at how fast-math-
style optimizations are modeled in Icing. Typically, in unverified compilers, fast-math-style
optimizations are local and syntactic, i.e., they are so-called peephole rewrites. In Icing,
these optimizations are written as directed rewrites s→ t denoting that any subexpression
matching pattern s rewrites to t, where the rewriter instantiates pattern variables in t
with a substitution obtained from matching with s. The find-and-replace patterns of a
rewrite are terms from the following pattern language, which mirrors Icing syntax:

p1, p2, p3 ::= w | b | x | � p1 | p1 ◦ p2 | p1� p2 | fma (p1, p2, p3) | isNaN p1

Table 5.1 shows the set of rewrites currently supported in our development. While this
set does not include all of GCC’s fast-math optimizations, it does cover the three primary
categories:

• performance and precision improving strength reduction which fuses x ∗ y + z into
an fma instruction (Rewrite 1)
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• reordering based on real-valued identities, here commutativity and associativity of
+, ∗; double negation; and distributivity of ∗ (Rewrites 2 - 5)

• simplifying computation based on (assumed) real-valued behavior for computations
by removing NaN error checks (Rewrite 6)

A key feature of Icing’s design is that each rewrite can be guarded by a rewrite
precondition. We distinguish compiler rewrite preconditions and application rewrite
preconditions. Compiler rewrite preconditions must be true for the rewrite to be correct
with respect to Icing semantics. Removing a NaN check, for example, can change the runtime
behavior of a floating-point program: a previously crashing program may terminate or
vice-versa. Thus a NaN-check can only be removed if the value can never be a NaN.

In contrast, an application rewrite precondition guards a rewrite that can always be
proven correct against the Icing semantics, but where a user may still want finer-grained
control over when the rewrite is applied. By restricting the context where Icing may
fire these rewrites, a user can establish end-to-end properities of their application, e.g.,
a worst-case roundoff error. The crucial difference is that the compiler preconditions
must be discharged before the rewrite can be proven correct against the Icing semantics,
whereas the application precondition is an additional restriction limiting where the rewrite
is applied for a specific application. Putting this into the global context of proving
compiler correctness, an application precondition does not have to be proven to verify
the compiler, it is merely a guideline for the compiler to ensure that an optimization is
only used if it is considered beneficial. On the contrary, a compiler precondition must
always be formally proven to prove compiler correctness, as applying the rewrite crucially
depends on the precondition being true.
A key benefit of this design is that rewrite preconditions can serve as an interface to

external tools to apply optimizations conditionally. This feature enables Icing to address
limitations that have prevented previous work from proving fast-math-style optimizations
in verified compilers [17] since “The only way to exploit these [floating-point] simplifications
while preserving semantics would be to apply them conditionally, based on the results of a
static analysis (such as FP interval analysis) that can exclude the problematic cases.” ([17],
p. 21) In our setting, a static analysis tool can be used to establish an application rewrite
precondition, while compiler rewrite preconditions can be discharged during (or potentially
after) compilation via static analysis or manual proof.
This design choice essentially decouples the floating-point static analyzer from the

general-purpose compiler. One motivation for this decoupling is that the compiler is
free to perform hardware-specific rewrites, which source-code-based static analyzers
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would generally not be aware of. Furthermore, integrating end-to-end verification of
these rewrites into a compiler would require the compiler to always run a global static
analysis. For this reason, Icing provides the rewrite-preconditions as an interface which
communicates only the necessary information.

Rewrites which duplicate matched subexpressions, e.g., distributing multiplication over
addition, required careful design in Icing. Such rewrites can lead to unexpected results if
different copies of the duplicated expression are optimized differently; this also complicates
their Icing correctness proof. We show how preconditions additionally enabled us to
address this challenge in Section 5.5.

To optimize a program, Icing folds a list of rewrites rws over a program e:

rewrite ([],e) = e

rewrite ((s → t)::rws, e) =

let e’ = if matches (e, s) then app (s → t, e) else e in

rewrite (rws, e’)

For rewrite s → t at the head of rws, rewrite (rws, e) checks if s matches e, applies
the rewrite if so, and recurses. Function rewrite is used in our optimizers in a bottom-up
traversal of the AST. Icing users can specify which rewrites may be applied under each
distinct opt: scope in their code or use a default set (shown in Table 5.1).

5.3.3. Semantics

Next, we explain the semantics of Icing, highlighting two distinguishing features. First,
values are represented as trees instead of simple floating-point words, thus delaying
evaluation of arithmetic expressions. Second, rewrites in the semantics are applied non-
deterministically, thus relaxing floating-point evaluation enough to prove fast-math-style
optimizations correct.

We define Icing’s semantics as a big-step relation → in Figure 5.2. Given

(cfg,E,e)→ v

cfg is the current configuration of the floating-point optimizer consisting of a list of
allowed optimizations as rewrites (s→ t), and a flag tracking whether optimizations are
allowed. The semantics only allows optimizations below an opt: scope (OptOk). Parameter
E is the (runtime) execution environment mapping free variables to values and e an Icing
expression. The value v is then the result of evaluating e under environment E while
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(cfg,E,c)→ c
Const

(cfg,E,b)→ b
Bool

E(x) = r
(cfg,E,x)→ r

Var

(cfg,E,e)→ v

(� v, cfg) rewritesTo r

(cfg,E,� e)→ r
Unary

(cfg,E,e)→ v

(isNaN v, cfg) rewritesTo r

(cfg,E,isNaN e)→ r
isNaN

(cfg,E,e1)→ v1

(cfg,E,e2)→ v2

(v1 ◦ v2, cfg) rewritesTo r

(cfg,E,e1 ◦ e2)→ r
Binary

(cfg,E,ei)→ vi i ∈ 1, 2, 3

(fma(v1, v2, v3), cfg) rewritesTo r

(cfg,E,fma(e1, e2, e3) → r)
fma

(cfg,E,e1)→ v1

(cfg,E[x 7→ v1],e2)→ v2

(cfg,E,letx=e1 ine2)→ v2
Let-bind

(cfg,E,e)→ vl

n < |vl|
vl[n] = r

(cfg,E,e [n])→ r Ith

(cfg,E,e1)→ v1

(cfg,E,e2)→ v2

(v1�v2, cfg) rewritesTo r

(cfg,E,e1 � e2)→ r
Compare

(cfg,E,c)→ cv

cTree2IEEE cv = b

(cfg,E,eb)→ r

(cfg,E,ifc theneT elseeF)→ r If

(cfg with OptOk := true,E,e)→ v
(cfg,E,opt:e)→ v

Scope

Figure 5.2: Non-determinstic Icing semantics

applying optimizations from cfg. We start the explanation of the details of the semantics
with its two key ideas.

The first key idea of Icing’s semantics is that expressions are not evaluated to (64-bit)
floating-point words immediately; the semantics instead evaluates them into value trees
representing their computation result. As an example, if e1 evaluates to value tree v1 and
e2 to v2, the semantics returns the value tree represented as v1 + v2 instead of the result
of the floating-point addition of (flattened) v1 and v2. The syntax of value trees is:

c ::= b | isNaN v1 | v1 � v2 | opt: c
v1, v2, v3 ::= w | � v1 | v1 ◦ v2 | fma(v1, v2, v3) | opt: v1
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Constants are again defined as floating-point words and form the leaves of value trees
(variables are replaced with value trees from the execution environment E). On top of
constants, each syntactic floating-point operation in Icing has a semantic value tree as its
counterpart.

The second key idea of our semantics is that it non-deterministically applies rewrites
from the configuration cfg while evaluating expression e instead of just returning its value
tree. The semantics models non-deterministic choice of an optimization result for value
tree v with the relation rewritesTo. Relation (v, cfg) rewritesTo r holds if either cfg

allows for optimizations to be applied (OptOk = true), and value tree v can be rewritten
into value tree r using rewrites from the configuration cfg; or the configuration does not
allow for rewrites to be applied (OptOk = false), and v = r. If OptOk is true, relation
rewritesTo non-deterministically picks a (potentially empty) subset of the rewrites from
the configuration cfg and applies them to value tree v. Rewriting on value trees reuses
definitions of syntactic rewriting from Section 5.3.2.

Icing’s semantics allows optimizations to occur while evaluating arithmetic and compar-
ison operations. The rules Unary, Binary, fma, isNaN, and Compare first evaluate argument
expressions into value trees. The final result is then non-deterministically chosen from the
rewritesTo relation for the obtained value tree and the current configuration. Evaluation
of Map, Fold, and let-bindings follows standard textbook evaluation semantics and does
not apply optimizations.

Rule Scope models the fine-grained control over where optimizations are applied in the
semantics. The Icing semantics stores in the current configuration cfg that optimizations
are allowed in the (sub-)expression e (cfg with OptOk := true).

Evaluation of a conditional (if c then eT else eF ) first evaluates the conditional guard
c to a value tree cv. Based on value tree cv the semantics picks a branch to continue
evaluation in. This eager evaluation for conditionals (in contrast to delaying by leaving
them as a value tree) is crucial to integrate Icing with CakeML later, which also eagerly
evaluates conditionals. As the value tree cv represents a delayed evaluation of a boolean
value, the semantics turns it into a boolean constant when selecting the branch to continue
evaluation in. This is done using the functions cTree2IEEE and tree2IEEE. Function
cTree2IEEE (v) computes the boolean value, and tree2IEEE (v) computes the floating-
point word represented by the value tree v by applying IEEE-754 arithmetic operations
and structural recursion.

Example. We illustrate Icing semantics and how optimizations are applied both in
syntax and semantics with the example in Figure 5.3. The example first translates the
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let v1 = Map (λ x. opt:(x + 3.0)) vi in

let vsum = Fold (λ x y. opt:(x * x + y)) 0.0 v1 in sqrt vsum

Figure 5.3: A simple Icing program

input list by 3.0 using a Map, and then computes the norm of the translated list with Fold

and sqrt.

Our example program is optimized with commutativity of + (x+ y → y + x) and fma

introduction (x ∗ y + z → fma(x, y, z)). Depending on their order, the function rewrite

produces different results.

If we first apply commutativity of +, and then fma introduction, all + operations in our
example will be commuted, but no fma introduced as the fma introduction syntactically
relies on the expression having the structure x ∗ y + z where x, y, z can be arbitrary. In
contrast, if we use the opposite order of rewrites, the second line will be replaced by
let vsum = Fold (λ x y. fma (x,x,y)) 0.0 v1 and commutativity is only applied in the
first line.

To illustrate how the semantics applies optimizations, we run the program on the 2D
unit vector (vi = [1.0,1.0]) in a configuration that contains both rewrites. Consequently,
the Map application can produce [1.0 + 3.0, 1.0 + 3.0], [3.0 + 1.0, 3.0 + 1.0], and
also results like [1.0 + 3.0, 3.0 + 1.0] where due to non-determinism the optimization
is only applied to the second term. The terms 1.0 + 3.0 and 3.0 + 1.0 correspond to
the value trees representing the addition of 1.0 and 3.0.

If we apply the Fold operation to this list, there are even more possible optimization
results:

[(1.0 + 3.0) * (1.0 + 3.0) + (1.0 + 3.0) * (1.0 + 3.0)],

[(3.0 + 1.0) * (3.0 + 1.0) + (3.0 + 1.0) * (3.0 + 1.0)],

[fma ((3.0 + 1.0), (3.0 + 1.0), (3.0 + 1.0) * (3.0 + 1.0))],

[fma ((1.0 + 3.0), (1.0 + 3.0), (3.0 + 1.0) * (1.0 + 3.0))], . . .

Again, the results of the semantics include more possible values than those that can be
produced by syntactic optimization. The first result is the result of evaluating the initial
program without any rewrites, the second result corresponds to syntactically optimizing
with commutativity of + and then fma introduction, and the third corresponds to using
the opposite order syntactically. The last result is only a result of semantic optimizations
as commutativity and fma introduction are applied to some intermediate results of Map,
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Theorem 5.1.
Let E be an environment, e an Icing expression, v a value tree, and cfg a
configuration.
If (cfg,E,compileIEEE754 e) → v and cfg.OptOk = false

then (cfg with [],E,e) → v.

Theorem 5.2.
Let E be an environment, e an Icing expression, v a value tree, and cfg1 and cfg2

a configuration.
If (cfg1,E,compileIEEE754 e) → v,
cfg1.OptOk = false, and cfg2.OptOk = false

then (cfg2,E,compileIEEE754 e) → v.

Figure 5.4: Correctness Theorems for compileIEEE754

but not all. There is no syntactic application of commutativity and fma introduction
leading to such results.

5.4. Modeling Existing Compilers in Icing

With the syntax and semantics of Icing defined, we turn to implementing and proving
correct two optimizers. The first optimizer models the behavior of verified compilers, like
CompCert and CakeML, and the second models the behavior of unverified compilers, like
GCC and Clang, respectively. First, we implement the former as a translator of Icing
expressions which preserves the IEEE-754 strict meaning of its input expression and does
not allow for any further optimizations. Then, the latter is implemented as a greedy
optimizer that unconditionally optimizes expressions, as observed for GCC and Clang.

5.4.1. An IEEE-754 Preserving Translator

When compiling safety-critical code or after applying some syntactic optimizations, the
user may require the compiler to preserve the strict IEEE-754 meaning of an expression.
In contrast, the Icing semantics always optimizes non-deterministically based on the
current configuration.

To make sure that an expression both exhibits strict IEEE-754 compliant behavior
and that its behavior cannot be changed any further by the compiler, Icing provides the
“optimizer” compileIEEE754. Function compileIEEE754 essentiallys disallows optimizations
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by replacing all optimizable expressions opt: e with their non-optimizable counterpart e.
We state the correctness properties for compileIEEE754 in Figure 5.4. We have proven
once and for all that running function compileIEEE754 on an expression a) disallows
optimizations (Theorem 5.1), and b) evaluation is deterministic (Theorem 5.2).

5.4.2. A Greedy Optimizer

Next, we implement and prove correct an optimizer that mimics the (observed) behavior of
GCC and Clang as closely as possible. The optimizer applies fma introduction (fma-intro),
associativity (assoc) and commutativity (comm) greedily. All these rewrites only have
an application rewrite precondition which we instantiate to true to apply the rewrites
unconstrained.

To give an intuition for greedy optimization, recall the example from Figure 5.3. Greedy
optimization does not consider whether applying an optimization is beneficial or not.
If the optimization is allowed to be applied and it matches some subexpression of an
optimizable expression, it is applied. Thus the order of optimizations matters. Applying
the greedy optimizer with the rewrites [comm, fma-intro, assoc] to the example, we get:

let v1 = Map (λ x. opt:(3.0 + x)) vi in

let vsum = Fold (λ x y. opt:(y + x * x)) 0.0 v1 in sqrt vsum

Only commutativity has been applied as associativity does not match and the possibility
for an fma introduction is ruled out by commutativity. If we reverse the list of optimizations
into [assoc, fma-intro, comm] we obtain:

let v1 = Map (λ x. opt:(3.0 + x)) vi in

let vsum = Fold (λ x y. opt:(fma (x,x,y))) 0.0 v1 in sqrt vsum

which we consider to be a more efficient version of the program from Figure 5.3.

Greedy optimization is implemented as the function optimizeGreedy (rws, e) which
applies the rewrites in rws in a bottom-up traversal to expression e. Our greedy optimizer
combined with the fine-grained control of the opt annotations allows the end-user to
control where optimizations can be applied.

We prove correctness of optimizeGreedy with respect to the Icing semantics, i.e., we
show that optimizing greedily gives the same result as applying the greedy rewrites in the
semantics:2

2As in many verified compilers, Icing’s proofs closely follow the structure of optimizations. Achieving
this required careful design and many iterations; we consider the simplicity of Icing’s proofs to be a
strength of this work.
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Theorem 5.3 (optimizeGreedy is correct).
Let E be an environment, e an Icing expression, v a value tree and cfg a configu-
ration.
If (cfg with [],E,optimizeGreedy ([assoc, comm, fma-intro], e)) → v

then (cfg with [assoc, comm, fma-intro],E,e) → v.

In our formal development, we do not prove Theorem 5.3 directly. A key issue of a
direct proof is that it would be very specific to our particular choice of optimizations for
optimizeGreedy, i.e., the proof requires showing correctness of a single optimization in
the presence of other optimizations being applied potentially. Instead, we simplify the
proof of Theorem 5.3 into separate correctness proofs about each optimization and chain
these together. To this end, we first prove that applications of the function rewrite can
be chained together in the semantics:

Lemma 5.1 (rewrite is compositional).
Let e be an expression, v a value tree, s→ t a rewrite, and rws a set of rewrites.
If the rewrite s→ t can be correctly simulated in the semantics, and list rws can
be correctly simulated in the semantics, then the list of rewrites (s→ t) :: rws

can be correctly simulated in the semantics.

From Lemma 5.1, we can conclude that it suffices to prove each optimization correct
separately and then chain them together for a global correctness proof about function
rewrite. Theorem 5.3 is proven with an analogous lemma about function optimizeGreedy.
Using these two simplifying lemmas, adding, removing and reordering of optimizations in
optimizeGreedy is as simple as changing the list of rewrites, while preserving correctness
of the optimizer.

5.5. A Conditional Optimizer

In the previous section, we implemented two optimizers: An IEEE-754 optimizer, which
has the same behavior as CompCert and CakeML, and a greedy optimizer with the
(observed) behavior of GCC and Clang. For the greedy optimizer to be useful, Icing’s
fine-grained control through opt: annotations is essential. However, we argue in this
section that only using opt: annotations is often not enough. Instead, we demonstrate
how preconditions can be used as additional constraints on where rewrites are applied,
and sketch how preconditions serve as an interface between a compiler and external tools,
which can discharge these preconditions.
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A crucial first observation is that in many cases whether an optimization is acceptable
or not can be captured with a precondition on the optimization itself. One example for
such an optimization is the removal of NaN checks, as a check for a NaN should only be
removed if the check never succeeds.

For the rewrites supported in Icing, we have previously distinguished between two
classes of rewrite preconditions: application rewrite preconditions that give more fine-
grained control to a user but are not strictly necessary, and compiler rewrite preconditions
that model necessary conditions for a rewrite to be applicable. We argue that both
classes of preconditions should be discharged by external tools. Many interesting rewrite
preconditions depend on a global analysis. However, running a global analysis as part of
a compiler is infeasible, as it would require maintaining separate analyses for each rewrite,
which is not likely to scale. Our proposed solution is for Icing to expose an interface to
external tools via the rewrite preconditions.

We implement this idea in the conditional optimizer optimizeCond that supports three
different applications of fast-math optimizations: applying optimizations rws uncon-
strained (uncond rws), applying optimizations if precondition P is true (cond P rws), and
applying optimizations under the assumptions generated by function A which should
be discharged externally (assume A rws). When applying a rewrite cond, optimizeCond
checks whether precondition P is true before optimizing, whereas for assume the proposi-
tions returned by A are assumed, and should then be discharged separately via a static
analysis or a manual proof.

Correctness of optimizeCond relates syntactic optimizations to applying optimizations
in the semantics. Similar to optimizeGreedy, we designed the proof modularly such that
it suffices to prove correct each rewrite individually.

Our optimizer optimizeCond takes as arguments first a list of rewrite applications
using uncond, cond, and assume then an expression e. If the list is empty, we have
optimizeCond ([], e) = e. Otherwise the rewrite is applied in a bottom-up traversal to
e and optimization continues recursively. For uncond, the rewrites are applied if they
match; for cond P rws the precondition P is checked for the expression being optimized
and the rewrites rws are applied if P is true; for assume A rws, the function A is evaluated
on the expression being optimized. If execution of A fails, no optimization is applied.
Otherwise, A returns a list of assumptions which are logged by the compiler and the
rewrites are applied3.

3As their name suggests, these assumptions are faithfully assumed by the correctness proof of
optimizeCond, and the optimization designer must ensure that not contradictory or false statements
are introduced.
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Using the interface provided by preconditions, one can prove external theorems showing
additional properties of a compiler run using application rewrite preconditions, and
external theorems showing how to discharge compiler rewrite preconditions with static
analysis tools or a manual proof. We call such external theorems meta theorems.

In the following we discuss two possible meta theorems, highlighting key steps required
for implementing (and proving) them. A complete implementation consists of two connec-
tions: (1) from the compiler to rewrite preconditions and (2) from rewrite preconditions
to external tools. We implement (1) independently of any particular tool. As an example
for (2) we implement a connection to a roundoff error analysis later in Section 6.5 when
integrating Icing with CakeML; in general, meta theorems depend on global analyses
which are orthogonal to designing Icing, which is the main focus of this chapter. Several
external tools already provide functionality that is a close match to our interface and we
sketch possible connections below. We note that for these meta theorems, optimizeCond
should track the context in which an assumption is made and use the context to express
assumptions as local program properties. Our current optimizeCond implementation does
not collect this contextual information yet, as this information at least partially depends
on the particular meta theorems desired.

5.5.1. A Logging Compiler for NaN Special Value Checks

We show how a meta theorem can be used to discharge a compiler rewrite precondition on
the example of removing a NaN check. Generally, removing a NaN check can be unsound if
the check could have succeeded. Inferring statically whether a value can be a NaN special
value or not requires either a global static analysis, or a manual proof for all possible
executions.

Preconditions are our interface to external tools and for NaN check removal, we implement
a function removeNaNcheck e that returns the assumption that no NaN special value can
be the result of evaluating the argument expression e. Function removeNaNcheck can then
be used as part of an assume rule for optimizeCond.

We have reduced correctness of optimizeCond to a series of local correctness proofs
exactly as we did for optimizeGreedy. As such, it suffices to prove a local, strengthened
correctness theorem for NaN check removal, showing that if the assumption returned by
removeNaNcheck is discharged externally (i.e., by the end-user or via static analysis), then
we can simulate applying NaN check removal syntactically in the Icing semantics:
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Theorem 5.4 (NaN check removal).
Let E be an environment, v a value tree, cfg a configuration, and e an Icing
expression.
If (cfg,E,isNaN e)→ false and (cfg,E,rewrite ([roNaNcheck], isNaN e))→
v

then (cfg with [noNaNcheck],E,isNaN e) → v.

The theorem has the additional assumption that expression isNaN e evaluates to false,
i.e., the result of evaluating expression e is not a NaN. The assumption is additionally
returned as the result of optimizeCond since it is faithfully assumed when optimizing.
Such assumptions can be discharged by static analyzers like Verasco [62], and Gappa [37].

5.5.2. Proving Roundoff Error Improvement

Rewrites like associativity and distributivity change the results of floating-point programs.
One way of capturing this behavior for a single expression is to compute the roundoff
error, i.e., the difference between an idealized real-valued and a floating-point execution
of the expression.

To compute an upper bound on the roundoff error, various formally verified tools have
been implemented [120, 12, 111, 37]. A possible meta theorem is thus to show that
applying a particular list of optimizations does not increase the roundoff error of the
optimized expression but only decreases or preserves it.

The meta theorem for this example would show that a) all the applied syntactic rewrites
can be simulated in the semantics and b) the worst-case roundoff error of the optimized
expression is smaller than or equal to the error of the input expression. Our development
already proves a) and we sketch the steps necessary to show b) below.

We can leverage these roundoff error analysis tools as application preconditions in a
cond rule, checking whether a rewrite should be applied or not in optimizeCond. For a
particular expression e, an application precondition (check (s → t, e)) would return
true if applying rewrite s → t does not increase the roundoff error of e.

Theorem 5.5 (check decreases roundoff error).
(cfg,E,optimizeCond ([Cond (λ e. check (s → t, e))], e)) → v ⇒
(cfg with opts := cfg.opts ∪ {s → t},E,e) → v ∧
error (optimizeCond ([Cond (λ e. check (s → t, e))], e)) ≤ error e
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Implementing check (s → t, e) requires computing a roundoff error for expression e

and one for e rewritten with s → t where check (s → t, e) returns true if and only
if the roundoff error has not increased by applying the rewrite. Proving the theorem
would require giving a real-valued semantics for Icing, connecting Icing’s semantics to
the semantics of the roundoff error analysis tool, and a global range analysis on the Icing
programs, which can be provided by Verasco and Gappa.

5.5.3. Supporting Distributivity in optimizeCond

So far, all rewrites we used in both the greedy optimizer and the conditional optimizer
only reorder subexpressions, but never change their number of occurrences. In this section
we consider rewrites which introduce additional occurrences of subexpressions, which we
dub a duplicative rewrite. Two commonly known duplicative rewrites are distributivity of
× over + (x× (y+x)↔ x× y+x× z) and rewriting a single multiplication into multiple
additions (x × n ↔

∑n
i=1 x). As an example, we consider distributivity, and how it is

proven correct with respect to the Icing semantics4. A compiler might want to use this
optimization to apply further strength reductions or fma introduction.
As the name suggests, the key issue of duplicative rewrites is that they add new

occurrences for a matched subexpression. If we apply (x × (y + z) → x × y + x × z)
to e1 * (2 + x), we get e1 * 2 + e1 * x. The key problem of verifying this result
with respect to the Icing semantics is that in the non-deterministic semantics the two
occurrences of e1 can be evaluated to different results as optimizations may be applied to
only one occurrence.
Because of this phenomenon, any correctness proof for a duplicative rewrite must

match up the two potentially different executions of e1 in the optimized expression
(e1 * 2 + e1 * x) with the execution of e1 in the initial expression (e1 * (2 + x)). This
can only be achieved by finding a common intermediate optimization (resp. evaluation)
result shared by both occurrences of e1 in e1 * 2 + e1 * x.

In Icing, existence of such an intermediate result can only be proven for expressions that
do not depend on “eager” evaluation, i.e., which consists of let-bindings and arithmetic.
We illustrate the problem using a conditional (if c then e1 else e2) as an example. In
the Icing semantics, the guard c is first evaluated to a value tree cv. Next, the semantics
evaluates cv to a boolean value b using function cTree2IEEE. Computing b from cv loses

4As we will demonstrate, the original CAV’19 paper included a very strict criterion required for proving
distributivity correct. However, when integrating Icing with CakeML, we learned that this criterion
can be dropped. At the time, we could not foresee some of the low-level changes required when
integrating Icing with CakeML, thus we keep the original discussion here for completeness.
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the structural information encoded in the value tree cv by computing the results of
previously delayed arithmetic operations. Due to this loss of information, rewrites that
previously matched the structure of cv no longer apply to b.

Generally, the problem of eager evaluation interfering with non-deterministic optimiza-
tion is not a bug in the Icing semantics. On the contrary, our semantics makes this issue
explicit, while in other languages it can lead to unexpected behavior (e.g., in GCC’s
support for distributivity under fast-math). CakeML, for example, also eagerly evaluates
conditionals and similarly loses structural information about optimizations that otherwise
may have been applied. To fix this issue, one may think that conditionals should be
evaluated lazily. However, lazy conditionals in general would only “postpone” the issue
until eager evaluation of the conditional expression is required, e.g., for a loop.

As a first reaction, one may choose to optimize with duplicative rewrites only if there
are no control dependencies on the expression being optimized. However, this approach
may be unsatisfactory as it disallows branching on the results of optimized expressions
and requires a verified dependency analysis that must be rerun or incrementally updated
after every rewrite, and thus could become a bottleneck for fast-math optimizers. Instead,
in Icing, we restrict duplicative rewrites to only fire when pattern variables are matched
against program variables, e.g., pattern variables a, b, c only match against program
variables x, y, z. This restriction to only matching let-bound variables is more scalable,
as it can easily be checked syntactically, and allows us to loosen the restriction on
control-flow dependence by simply let-binding subexpressions as needed.

5.6. Related Work

We have already hinted throughout the chapter at related work performed inside verified
compilers. In this section, we review related work in terms of verified compilation,
optimization, and analysis of floating-point code.

Verified Compilation of Floating-Point Programs. CompCert [73] uses a con-
structive formalization of IEEE-754 arithmetic [17] based on Flocq [18] which allows for
verified constant propagation, strength reduction optimizations for divisions by powers
of 2, and replacing x × 2 by x + x. The situation is similar for CakeML [113] whose
floating-point semantics is based on HOL’s formalization of IEEE-754 [49, 50]. With
Icing, we propose a semantics which allows important floating-point rewrites in a verified
compiler by allowing users to specify a larger set of possible behaviors for their source
programs. The precondition mechanism serves as an interface to external tools. While
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Icing is implemented in HOL, our techniques are not specific to higher-order logic or the
details of CakeML and we believe that an analog of our “verified fast-math” approach
could easily be ported to CompCert.

The Alive framework [79] has been extended to verify floating-point peephole optimiza-
tions [86, 98]. While these tools relax some exceptional (NaN) cases, most optimizations
still need to preserve “bit-for-bit” IEEE-754 behavior, which precludes valuable rewrites
like the fma introductions Icing supports.

Optimization of Floating-Point Programs. One interesting approach to increase
performance of floating-point programs is to decrease precision at the expense of accuracy
in so-called “mixed-precision tuning”. For instance, mixed-precision tuning may change
parts of a program from double to running in single floating-point precision. Current
tools [107, 26, 36, 29], ensure that a user-provided error bound remains satisfied either
through dynamic or static analysis techniques. In this work, we consider only uniform
64-bit floating-point precision, but Icing’s optimizations are equally applicable to other
precisions. An extension of Icing to support mixed-precision computations would be
straight-forward. However, supporting optimizations in the style of mixed-precision tuning
is not straight-forward as it requires a careful redesign of the value tree datatype, the
optimization language and the correctness proofs for the optimizer to properly handle
precision assignments as a separate layer of complexity.

Spiral [105] uses real-valued linear algebra identities for rewriting at the algorithmic level
to choose a layout which provides the best performance for a particular platform, but due
to operation reordering it is not IEEE-754 semantics preserving. Herbie [101] optimizes
for accuracy, and not for performance by applying rewrites which are mostly based on
real-valued identities. The optimizations performed by Spiral and Herbie go beyond what
traditional compilers perform, but they fit our view that it is sometimes beneficial to relax
the strict IEEE-754 specification, and could be considered in an extended implementation
of Icing. On the other hand, STOKE’s floating-point superoptimizer [109] for x86 binaries
does not preserve real-valued semantics, and only provides approximate correctness using
dynamic analysis.

Analysis and Verification of Floating-Point Programs. Static analysis for bound-
ing roundoff errors of finite-precision computations with respect to a real-valued seman-
tics [111, 34, 80, 92, 45, 37] (some with formal certificates in Coq or HOL), are currently
limited to short, mostly straight-line functions and require fine-grained domain annota-
tions at the function level. Whole program accuracy can be formally verified with respect
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to a real-valued implementation with substantial user interaction and expertise [106].
Verification of elementary function implementations has also recently been automated,
but requires substantial compute resources [72].

On the other hand, static analyses aiming to verify the absence of runtime exceptions
like division by zero [14, 23, 61, 62] scale to realistic programs. We believe that such tools
can be used to satisfy preconditions and thus Icing would serve as an interface between
the compiler and such specialized verification techniques.

The KLEE symbolic execution engine [22] has support for floating-point programs [76]
through an interface to Z3’s floating-point theory [19]. This theory is also based on IEEE-
754 and will thus not be able to verify the kind of optimizations that Icing supports.

5.7. Discussion

In this chapter, we have presented the Icing language, the first non-deterministic floating-
point semantics that verifies fast-math-style optimizations. With our two reference
optimizers, compileIEEE754 and optimizeGreedy, we have demonstrated that Icing can
model the observed behavior of existing verified and unverified compilers.

In the next chapter we demonstrate how Icing can be tightly integrated with CakeML
to support fast-math-style optimizations of floating-point code. By integrating a verified
roundoff error analysis, CakeML follows the design outlined for the conditional optimizer
and we relate optimized floating-point machine code to its unoptimized real-valued
counterpart.
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CHAPTER 6

RealCake

Verified Compilation and Optimization

of Floating-Point Programs in CakeML

This chapter is based on our paper titled Verified Compilation and Optimization of
Floating-Point Programs in CakeML[9], which has been published at ECOOP’22. The
work is a collaboration with Robert Rabe, Eva Darulova, Magnus Myreen, Zachary
Tatlock, Ramana Kumar, Yong Kiam Tan, and Anthony Fox. The formal development
was done mainly by me. Robert Rabe has helped with the design of the optimizer
under my supervision during his internship, Yong Kiam Tan and Ramana Kumar have
helped with small proof goals in the optimization correctness proofs, and Anthony Fox
has helped with the 64-bit floating-point arithmetic implementation, which is part of
the original publication but not included in the thesis. Eva Darulova, Magnus Myreen,
and Zachary Tatlock have helped with writing the high-level sections of the paper and
provided feedback on the technical write-up.

All sections in this chapter are taken from the ECOOP publication, with minor
rewordings and edits. The introduction (Section 6.1) is shortened to avoid some repetition.
Throughout, I removed the contribution of extending CakeML with IEEE-754 compliant
floating-point arithmetic as I did not contribute to this part. Finally, the paragraph
discussing distributivity (Section 6.4.1) is new and was not part of the original publication.

6.1. Introduction

State-of-the-art verified compilers like CakeML [113] for Standard ML and CompCert [74]
for C still only have very limited support for floating-point programs: CompCert performs
only a few conservative optimizations and, prior to this work, CakeML can only preserve
the literal meaning of 64-bit double floating-point programs.
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This limited support is in stark contrast to the rich set of fast-math optimizations
suppported by GCC [40] and LLVM [70]. Fast-math optimizations include reassociating
arithmetic, e.g., rewriting x × (x × (x × x)) → (x × x) × (x × x) to enable common
subexpression elimination; fused-multiply-add (fma) introduction, i.e., rewriting x×y+z →
fma(x, y, z) for strength reduction and to avoid intermediate rounding; as well as branch
folding and dead code elimination by assuming special floating-point values like Not-a-
Number (NaN) do not arise.

A key reason, which we have encountered throughout the thesis, why fast-math opti-
mizations are not supported by verified compilers up until now is that both CompCert [17]
and CakeML strictly preserve IEEE-754 semantics which disallows such optimizations.
However, for many applications strict preservation of IEEE-754 semantics is overly
constraining and artificial, preventing useful performance optimizations. Numerical appli-
cations are typically designed implicitly assuming real-number arithmetic and are only
later implemented in floating-point arithmetic1.

Previously, we presented the Icing language [13] as a relaxed, non-deterministic semantics
for floating-point expressions that allows a limited set of fast-math-style optimizations
to be applied. For our proof-of-concept optimizer, we have formally proven that the
optimization result is one of those modeled by the semantics of the initial expression.

However, while Icing formalizes what it means to allow fast-math-style optimizations
in a verified compiler, Icing does not bound the accuracy of the resulting, fast-math-
optimized code. In general, Icing’s correctness theorems describe only the optimizations
that a verified compiler can apply to a floating-point expression, but not their effect on
overall program behavior. Strictly speaking, the Icing optimizer cannot bound changes in
the accuracy of the optimized floating-point expression with respect to the real-valued
semantics of the unoptimized expression.

We argue that a verified compiler must provide accuracy guarantees to reasonably
support fast-math-style optimizations. Applications in domains such as signal process-
ing [27], embedded controllers [84], and neural networks [47], which could be optimized
with fast-math-style optimizations, are designed to operate in noisy environments and can
thus tolerate a certain amount of floating-point roundoff error by design; however, this
noise has to be bounded. For example, a real-number version of an embedded controller is
typically proven correct (i.e., stable) with respect to bounded implementation noise [85].
At the same time, performance is important and so developers are often indifferent to
fine-grained floating-point implementation decisions.

1Error-free computation with rational or constructive real [15] libraries is often prohibitively expensive.
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To support such potentially safety-critical applications in a verified compiler, we
introduce a local, more flexible notion of correctness which we call error refinement : a
floating-point kernel within an application may be optimized (potentially changing its
IEEE-754 behavior) as long as its results remain within a user-specified error bound
relative to the implicit real-number semantics.

We formalize error refinement inside the CakeML compiler to support fast-math
optimizations end-to-end. Our extension, which we call RealCake, carries source-level
guarantees down to fast-math-optimized executable machine code. That is, our final
correctness theorem shows that running the machine code for a fast-math-optimized
floating-point program under strict IEEE-754 semantics produces a result that is within
a programmer-provided error bound w.r.t. the unoptimized program evaluated under real-
number semantics. While our extension is done in the context of the CakeML compiler,
we expect it to carry over to other verified compilers like CompCert as well.

Our first key technical contribution is a relaxed floating-point semantics that allows
both fast-math-style optimizations as well as backward simulation soundness proofs (as
CakeML’s semantics requires determinism). RealCake’s relaxed semantics preserves the
core ideas of our Icing semantics Chapter 5 and models non-deterministic application
of an arbitrary number of fast-math rewrites, just as Icing does. However, Icing’s
non-deterministic semantics cannot be directly added to CakeML. Therefore, we design
RealCake’s semantics to be more tightly integrated with the CakeML source semantics.
This new integration is necessary to prove end-to-end error refinement that relates
unoptimized real-valued CakeML programs and optimized floating-point machine code.
RealCake’s design furthermore supports function calls, I/O and memory beyond (Icing
supported) floating-point expressions and can thus prove error refinement for complete
applications.

The second technical contribution is to realize error refinement with translation val-
idation [103, 108] using an interface to FloVer, our existing proof-producing roundoff
error bound analysis (Section 2.4 and Section 4.3). RealCake automatically composes
the error bound proofs with its optimizer’s correctness theorems to support fast-math
optimizations with semantic and accuracy guarantees within a verified compiler for the
first time.

RealCake is primarily designed to support numerical kernels: straight-line code as it
occurs in (safety-critical) embedded controllers and sensor-processing applications2. Often
such kernels are evaluated in a control loop or process sensor inputs repeatedly. For such

2RealCake nevertheless proves error refinement for whole programs, including I/O (Section 6.6).
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programs, both correctness as well as performance are important, and an analysis of the
straight-line code is sufficient: the correctness (stability) of the overall programs (and
loops) can be shown with, e.g., control-theoretic techniques that rely on the straight-line
loop body’s errors being ibounded [85, 81]. We do not address some of the orthogonal
challenges in bounding the floating-point roundoff error for programs with loops and
conditional statements, which remain open research problems [35]; state-of-the-art proof-
producing error bound analyses only robustly support straight-line numerical kernels [111,
92, 12]. A key aspect of RealCake’s design is the loose coupling between the compiler and
error analysis. This loose coupling leads to a clean separation of concerns, which we hope
will allow us to switch to more general error analysis methods when such are discovered.

We evaluate RealCake by optimizing all kernels from the standard floating-point
arithmetic benchmark suite FPBench [31] (Section 6.6) which can be expressed as input
to RealCake, for a total of 51 kernels. During our evaluation we found that CakeML was
missing a general optimization that is particularly effective for floating-point programs:
global constant lifting. RealCake achieves a (geometric) mean performance improvement
for fast-math optimizations of 3% and a maximum improvement of 16% on top of
improvements from constant lifting with respect to the unoptimized FPBench kernels.
Our additional constant lifting optimization achieves a geometric mean performance
improvement of 83% across all benchmarks with speedups of up-to 97%. For all optimized
kernels, RealCake formally guarantees that the roundoff error remains within a user-
specified bound.

Contributions. To summarize, this paper makes the following contributions:

• the concept of error refinement and its formalization within the CakeML verified
compiler (Section 6.2);

• an extension of CakeML with a relaxed non-deterministic floating-point semantics
(Section 6.3);

• a fast-math optimizer that is effective in improving the performance of floating-point
programs (Section 6.4);

• automated proof tools that soundly bound roundoff errors of (optimized and unop-
timized) kernels w.r.t. our new real-number semantics for CakeML (Section 6.5).
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1 (* target error bound: 2−5,

2 precondition P:

3 0.0 ≤ x1 ≤ 5.0 ∧ −20.0 ≤ x2 ≤ 5.0 *)

4 fun jetEngine(x1:double, x2:double):double =

5 opt: (let

6 val t = (((3.0 * x1) * x1) + (2.0 * x2)) - x1

7 val t2 = (((3.0 * x1) * x1) - (2.0 * x2)) - x1

8 val d = (x1 * x1) + 1.0

9 val s = t / d

10 val s2 = t2 / d

11 in

12 x1 + (((((((((2.0 * x1) * s) * (s - 3.0)) + ((x1 * x1) * ((4.0 * s) - 6.0))) * d) +

13 (((3.0 * x1) * x1) * s)) + ((x1 * x1) * x1)) + x1) + (3.0 * s2))

14 end)

Figure 6.1: Example unoptimized CakeML floating-point kernel. The opt: annotation
(lines 5) allows developers to selectively apply optimizations. Here, we choose
to optimize the entire kernel, but a user may place only part of a program
under opt: and the rest will be compiled preserving IEEE-754 semantics.

6.2. Overview

We start by demonstrating at a high-level how RealCake works using an example before
giving an overview of the RealCake toolchain and our major design decisions.

6.2.1. Example

Figure 6.1 shows jetEngine, a straight-line nonlinear embedded controller [85] adapted to
CakeML syntax. This controller has been proven to be safe for the dynamical system of
a jet engine compressor. That is, Martinez and Tabuada show that if the controller is
run with inputs (x1, x2) within the bounds given by P (on line 2 of Figure 6.1), then the
system will always steer the state variables towards the equilibrium point (0, 0), and thus
the system remains stable. This so-called stability proof assumes the control expression to
be real-valued, but accounts for a certain amount of bounded error, including measurement
and implementation errors, and hence the controller is stable as long as the errors remain
below this bound.

For the purpose of this example, we choose 2−5 as the bound on the roundoff error for
implementing the kernel in floating-point arithmetic (on line 1 of Figure 6.1), which would
then be used as the noise bound in the stability proof. Going beyond stability proofs, a
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1 (* guaranteed error bound: 2−5,

2 precondition P:

3 0.0 ≤ x1 ≤ 5.0 ∧ −20.0 ≤ x2 ≤ 5.0 *)

4 fun jetEngine(x1:double, x2:double):double =

5 noopt: (let

6 val t = fma((x1+x1)+x1, x1, (x2 + x2) - x1)

7 val t2 = fma((x1+x1)+x1, x1, fma(-2.0, x2, -x1))

8 val d = fma(x1, x1, 1.0)

9 val s = t / d

10 val s2 = t2 / d

11 in

12 x1 + fma(x1 * d, fma((s - 3.0) + (s - 3.0), s, x1 * fma(4.0, s, -6.0)),

13 fma(x1 * x1, ((s + s) + s) + x1, x1 + ((s2 + s2) + s2)))

14 end)

Figure 6.2: Example optimized CakeML floating-point kernel. The noopt: annotation
(lines 5) is added by the compiler and disallows further optimizations.

designer of a controller for a resource-constrained embedded systems is also concerned
with performance of the produced code. To summarize, an embedded developer designs
a controller, such as jetEngine, assuming real-valued arithmetic together with an error
bound, and requires that the executed finite-precision code A) correctly implements the
control expression, B) is as efficient as possible, and C) meets the error bound.

In a real-world scenario, a kernel like jetEngine may be part of a safety critical
system and we want to ensure that all guarantees of the stability proof still hold true
for its executable version. Thus we would compile the kernel using a verified compiler.
Unfortunately, no verified compiler today meets the requirements listed above: While
both CompCert [17] and CakeML support floating-point arithmetic, and so ensure A),
they do not optimize floating-point programs and cannot prove roundoff error bounds3.

RealCake, our extension of the CakeML compiler, closes this gap. RealCake automati-
cally optimizes the input kernel into the optimized version shown in Figure 6.2, compiles
it down to machine code, and proves the end-to-end correctness theorem that captures
both ‘traditional’ compiler correctness as well as accuracy guarantees.

For this example, RealCake prepares the program for optimization by replacing floating-
point subtraction by addition of the inverse ((4.0× s)− 6.0→ (4.0× s) + (−1× 6.0)), and
during optimization, RealCake replaces multiplications by additions (2.0×x1→ x1 +x1),

3The implementation and proofs about roundoff errors of the previously presented libmGen (Chapter 4)
were developed after RealCake, thus they were not (yet) availabe.

88



Chapter 6: Verified Optimization of Floating-Point Programs

1 fun main () = let

2 val args = Commandline.arguments ()

3 val a = Double.fromString (List.nth args 1)

4 val b = Double.fromString (List.nth args 2)

5 val r = jetEngine (a, b)

6 in

7 TextIO.print (Double.toString r)

8 end

Figure 6.3: Stand-in main function

and introduces fma instructions (x1× x1 + 1.0→ fma(x1, x1, 1.0)) that go beyond IEEE-
754 semantics. For this example, RealCake compiles the optimized floating-point kernel
(Figure 6.2) together with a simple stand-in main function (Figure 6.3) into a verified
binary.

On a Raspberry Pi v3, RealCake improves the performance of our example kernel by
95%. This performance improvement comes from both floating-point specific optimizations,
as well as global constant lifting that is not specific but particularly effective for floating-
points and that CakeML did not support before (Section 6.6). Such a speedup is important
for repeatedly run code such as our embedded controller.

RealCake automatically proves the end-to-end correctness theorem that we formally
state as:

Theorem 6.1 (jetEngine - Whole program correctness).
jetEngineInputsInPrecond ((s1, s2), (w1,w2), P) ∧
environmentOk ([jetEngine; s1; s2], fs) ⇒
∃w r .

CakeMLevaluatesAndPrints (jetEngineCode, s1, s2, fs) (toString w) ∧
initialFPcodeReturns jetEngineUnopt (w1,w2) w ∧
realSemanticsReturns jetEngineUnopt (w1,w2) r ∧
abs (fpToReal w − r) ≤ 2−5

In Theorem 6.1, jetEngineCode refers to the overall program consisting of the jetEngine

kernel, the stand-in main function from Figure 6.3, and the glue-code for I/O; jetEngine

is the name of the produced binary; and jetEngineUnopt is the kernel from Figure 6.1.
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At a high-level, Theorem 6.1 relates the behavior of the optimized program with the
behavior of the real-number semantics of the initial, unoptimized program on the domain
specified by precondition P .4

Formally, the theorem states that, if the kernel is run on a pair of two arbitrary input
strings s1 and s2, representing the double word inputs w1 and w2 respectively, and the dou-
ble words satisfy precondition P from Figure 6.1 (assumption jetEngineInputsInPrecond),
and if the machine code for the jetEngine kernel is run with three command line ar-
guments (the name of the binary, and s1 and s2) in an environment with filesystem fs

(assumption environmentOk), then there exists a double-precision floating-point word w
and a real-number r such that

(a) running the optimized kernel with the command line arguments prints the word w
on stdout5 (conclusion CakeMLevaluatesAndPrints)

(b) w is a result of running the unoptimized jetEngine kernel on (w1, w2) with op-
timizations applied by our relaxed semantics, (conclusion initialFPcodeReturns)
and

(c) running the initial unoptimized jetEngine kernel under real-number semantics on
(w1, w2) returns r (conclusion realSemanticsReturns) such that |w−r| ≤ 2−5, where
2−5 is the user-given error bound from Figure 6.1.

6.2.2. Overview of CakeML

At its core, RealCake is an extension of the CakeML compiler toolchain. Before giving
a high-level overview how RealCake proves Theorem 6.1, we give a high-level overview
of the CakeML compiler toolchain [113] built around a verified compiler for (a dialect
of) Standard ML (SML). CakeML compiles programs written in SML to x86, ARMv7,
ARMv8, MIPS, RISC-V and Silver [78] machine code and is implemented completely
in the HOL4 theorem prover [67]. Our work mainly focuses on the compiler part of the
CakeML ecosystem.
The behavior of a program written in the CakeML dialect of SML is defined in the

CakeML source semantics. This semantics is implemented as a deterministic function
4The precondition is important, since roundoff errors directly depend on the ranges of (intermediate)
values.

5We chose printing to standard output as one option for implementing I/O behavior to show how the
error bound proof can be related to I/O behavior. In a real-world setting this could be replaced by
other I/O functionality.
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input: RealCake program

CakeML compiler CakeML semantics

fast-math optimizer relaxed semanticsaccuracy analysis

input: constraints

output: specification with I/O 
and accuracy bound

§6 §5 §4.2
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accuracy correctness

optimizer correctness

compiler correctness

IEEE-754 floating-points §4.1 IEEE-754 floating-points §4.1 

output: machine code
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optimized program

Figure 6.4: Overview of the RealCake toolchain. Boxes with white background are part
of the original CakeML toolchain, our RealCake extensions are marked with
a green background, dashed lines indicate proof dependencies, solid lines
indicate output flows.

in the HOL4 theorem prover, in the style of functional big-step semantics [99]. CakeML
programs are turned into machine code using the in-logic compiler, with compiler passes
going through various intermediate languages.

The CakeML compiler’s correctness theorem states that the compiler preserves observ-
able behaviors of the input program, modulo out-of-memory errors that can occur in the
generated machine code [42].

6.2.3. Overview of RealCake

Figure 6.4 illustrates the RealCake toolchain, with the extensions over CakeML marked
in green. The RealCake toolchain takes as inputs a program and constraints similar to
those in Figure 6.1. In a first step, the fast-math optimizer is run on each floating-point
kernel, optimizing it with respect to RealCake’s relaxed floating-point semantics, as well
as lifting constants with our general constant lifting optimization. As a result we obtain
an optimized floating-point kernel, and a proof relating executions of the optimized kernel
back to its unoptimized version. Next, the input constraints, and the optimized kernel
are run through our accuracy analysis pipeline (left part of Figure 6.4). We have proven
once and for all that if the analysis succeeds, the roundoff error between the optimized
floating-point kernel and a real-number semantics of its unoptimized version is below
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the user specified error bound. This requires non-trivially combining properties of the
fast-math optimizer with a simulation proof relating results of the roundoff error analysis
to CakeML floating-point programs. Finally, the CakeML compiler compiles the optimized
kernel into machine code that can be run on x86-64 and ARMv7 platforms.6 RealCake
automatically combines optimizer correctness with the correctness of the accuracy analysis
and the CakeML compiler correctness theorem to prove a theorem about the I/O behavior
and the accuracy of the machine code with respect to the real-number semantics of the
unoptimized, initial kernel.

One of the key insights of RealCake is to apply the fast-math optimizations that
require reasoning about non-deterministic semantics early; a non-deterministic semantics
is integrated more easily with a deterministic verified compiler by resolving the non-
determinism before the code enters the compiler itself. We formally prove the correctness
of the fast-math optimizer once and for all: if the optimizer turns kernel p1 into kernel
p2, and evaluating p2 returns the floating-point word w, then the relaxed floating-point
semantics can evaluate and optimize p1 such that it returns w too.

6.2.4. Error Refinement

Suppose that RealCake would only prove correctness of floating-point optimizations alone,
like Icing did. This proof would effectively only capture the machine’s point of view, and
ignore the programmer’s (implicitly) real-valued source semantics. Instead, RealCake
proves error refinement as RealCake relates the real-numbered, unoptimized program
with its fast-math-optimized version. Proving error refinement requires both proving the
correctness of our optimizer (i.e., showing that the behavior of the source semantics is
preserved), as well as establishing accuracy guarantees using roundoff errors. We chose
error refinement as our baseline for correctness proofs as any fast-math optimization
necessarily changes the rounding and thus the result value of the floating-point kernel,
ruling out alternative bit-wise comparisons.

While the programmer will be indifferent to how exactly the floating-point code is
compiled and will accept some roundoff error—or she would not have chosen finite-
precision arithmetic in the first place—this roundoff error should not be unduly large

6At the time of writing, only the underlying ISA models for x86-64 and ARMv7 support floating-point
arithmetic in CakeML.
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and make the computed results useless7. We argue that a correctness theorem of verified
fast-math-optimized floating-point compilation thus needs to capture this error refinement.

To this end, RealCake follows the ideas of libmGen (Chapter 4 and automatically
infers verified accuracy bounds via a verified translation from CakeML source to the
proof-producing formally verified static analysis tool FloVer (Section 2.4). The key
difference between RealCake and libmGen is that libmGen translates FloVer polynomials
into CakeML code, while RealCake translates (a subset of) CakeML source into FloVer
expressions, i.e., the simulation proofs are performed in different directions. To prove
an accuracy bound for RealCake kernels, we combine a simulation proof relating the
floating-point semantics of FloVer and CakeML with a proof that all optimizations done
by our fast-math optimizer are real-valued identities. RealCake then automatically lifts
the roundoff error bound to the complete program and combines it with the general
compilation correctness proofs to automatically show the end-to-end correctness theorem
for our example (Theorem 6.1). This makes RealCake the first verified compiler for
floating-point arithmetic that proves a whole-program specification relating the I/O
behavior of optimized floating-point machine code to the real-number semantics of the
unoptimized initial program.

We choose to integrate the roundoff error analysis only loosely with CakeML. This
gives us a flexible compiler infrastructure that allows us to prove roundoff error bounds
on optimized as well as unoptimized floating-point kernels, or to greedily optimize kernels
without necessarily proving roundoff error bounds (but still obtaining compiler correctness
guarantees). By not tightly integrating the roundoff error analysis into CakeML, we have
the option to relatively easily replace FloVer with an extension or another tool in the
future.

RealCake’s end-to-end correctness theorem only relies on error bounds proven indepen-
dently for each straight-line kernel instead of a global kernel error bound. Our focus on
straight-line kernels is inherited from the current capabilities of verified floating-point
error analyses (see Section 2.4 for a more detailed discussion), but can be easily lifted
with advances in this area. Per-kernel error analysis, on the other hand, is crucial to
maintaining compiler modularity: it is not (nor should it be) the compiler’s responsibility
to ensure that a program is globally numerically stable—that is a job for the algorithm
designer. Rather, the compiler compiles and optimizes a program and, in the case of fast-
math floating-point optimizations, ensures that it has preserved sufficient (user-provided)

7There are programs, such as compensated sum algorithms [55], that explicitly rely on the exact
floating-point semantics; such code would not be subject to fast-math-style optimizations and thus
not written under an opt: scope.

93



Chapter 6: Verified Optimization of Floating-Point Programs

accuracy bounds with respect to a specification over real-number semantics. This can be
checked locally.
Similarly, the goal of the accuracy analysis is not necessarily to improve the accuracy

of a given kernel, even though introducing fmas will generally have this effect, but rather
to ensure that the compiler has not introduced unacceptable numerical instability by
accident.
Overall, a key challenge of RealCake is proof engineering. RealCake combines a

verified roundoff error analysis with the deterministic CakeML compiler and a non-
deterministic semantics that supports floating-point optimizations. Specifically, the main
proof engineering challenge is getting the different tools to “cooperate”. CakeML’s source
semantics is an integral part of the CakeML ecosystem. Therefore, our integration of
the relaxed floating-point semantics must make sure to not break any existing invariants.
Further, the semantics of the external roundoff error analysis and the semantics of CakeML
source programs must be compatible such that analysis results can be transformed into
CakeML source properties. Finally, all of this has to happen while making sure that
RealCake optimizes floating-point programs with a non-deterministic relaxed floating-point
semantics.

6.3. RealCake’s Semantics

Our overall goal for RealCake is to compile and optimize floating-point kernels, establishing
verified end-to-end correctness and accuracy guarantees. In this section, we lay the
foundations for this work by extending the CakeML compiler with two different semantics:
a relaxed floating-point semantics going beyond IEEE-754, and a real-number semantics
as a ground truth for bounding errors.

6.3.1. RealCake’s Relaxed Floating-Point Semantics

First, we present RealCake’s relaxed floating-point semantics. Exactly like our Icing
semantics (Chapter 5), the relaxed floating-point semantics applies optimizations during
evaluation. In CakeML, we call the process of applying optimizations to floating-point
kernels during evaluation semantic optimization. Before going into the details of how
evaluation and semantic optimization is implemented in the relaxed semantics, we briefly
review some necessary details of CakeML’s source semantics.

CakeML Source Semantics. The CakeML source semantics is implemented in the
style of functional big-step semantics [99]. As such, CakeML source semantics is a pure,
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deterministic function, called evaluate, in the HOL4 theorem prover and evaluating a
CakeML source term has the form

evaluate (st1, env, e) = (st2, r)

This result means that evaluating the CakeML source expression e under environment
env and global state st1 results in the global state st2 and ends with result r . If evaluation
succeeded, r is a value, otherwise r is an error. The global states st1 and st2 model the
state of global references, and interactions with the outside world (e.g., I/O) through the
foreign-function-interface (FFI).
We explain the evaluate implementation of operator evaluation in more detail, as

we extend it with relaxed floating-point operations later. The definition of operator
evaluation in CakeML is given in Figure 6.5a. In CakeML source, an operator application
is written as App op es, denoting that operator op is applied to the list of expressions es.

First, evaluate is run on the argument list (line 2 of Figure 6.5a). If evaluation of the
argument list fails with an error and a new state, the error and the state are returned (line
3). If evaluation succeeds and returns values vs , function do_app (line 5) applies operator
op to the value list vs for the current references (st ′.refs), and the current state of the FFI
(st ′.ffi). Function do_app fails if not enough or too many arguments to operator op are
given in vs. Therefore the semantics raises a type error (Rabort Rtype_error) if do_app
fails (line 6). If successful, function do_app returns a new state for the global references
(refs), a new state of the FFI (ffi), and a value v . The overall result of the evaluate call
is then the global state updated with refs and ffi , and value v (line 7).

Relaxed Floating-Point Semantics. Both the relaxed floating-point semantics and
Icing use value trees to represent floating-point values. However, Icing’s non-deterministic
semantics cannot be directly added to CakeML source, because evaluate is a deterministic
function. RealCake instead encodes the non-determinism as a deterministic optimization
oracle. Specifically, RealCake’s relaxed floating-point semantics extends the global state
with a floating-point optimization oracle:

fpState = <| rewrites : optimization list; opts : num → rewriteApp list;

canOpt : optChoice; choices : num |>

In the oracle, rewrites stores the currently allowed optimizations; opts encodes the oracle
decisions of when which optimization is applied; opts 0 returns all optimizations that
are applied next during evaluation of a floating-point expression; canOpt records the last
optimization scope that has been seen while evaluating and models the fine-grained control.
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evaluate (st, env, [App op es]) =

2 case evaluate (st, env, es) of (st’, Rerr v) => (st’, Rerr v)

| (st’, Rval vs) =>

4 case do_app (st’.refs, st’.ffi, op, vs) of

None => (st’, Rerr (Rabort Rtype_error))

6 | Some ((refs, ffi), r) => (updateState (st’, refs, ffi), list_result r)

(a) Standard operator evaluation

evaluate (st, env, [App op es]) =

2 case evaluate (st, env, es) of (st’, Rerr v) => (st’, Rerr v)

| (st’, Rval vs) =>

4 case do_app (st’.refs, st’.ffi, op, vs) of

None => (st’, Rerr (Rabort Rtype_error))

6 | Some ((refs, ffi), r) =>

let (st’, r_opt) = optimizeIfOk (st’, r)

8 fp_res = if isFpBool op then toBool r_opt else r_opt

in (updateState (st’, refs, ffi), list_result r)

(b) Relaxed floating-point evaluation

1 evaluate (st, env, [FpOptimise ann e]) =

case evaluate (updateOptFlag st ann, env, [e]) of

3 (st’, Rerr e) => (resetOptFlag (st’, st), Rerr e)

| (st’, Rval vs) => (resetOptFlag (st’, st), Rval (addAnnot (ann, vs)))

(c) Optimization scope evaluation

evaluate (st, env, [App op es]) =

2 case evaluate (st, env, es) of (st’, Rerr v) => (st’, Rerr v)

| (st’, Rval vs) =>

4 if ¬realsAllowed st’.fpState then (advanceOracle st’, Rerr (Rabort Rtype_error))

else case do_app (st’.refs, st’.ffi, op, vs) of

6 None => (st’, Rerr (Rabort Rtype_error))

| Some ((refs, ffi), r) => (updateState (st’, refs, ffi), list_result r)

(d) Real-valued operator evaluation

Figure 6.5: HOL4 definitions of operator evaluation in CakeML source (a), relaxed floating-
point semantics (b), real-number semantics (d), and evaluation of optimization
scopes (c). In (b) and (d) difference to (a) is highlighted in bold font.
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The relaxed floating-point semantics optimizes only if canOpt is an opt: annotation. In
choices we track the number of optimizations that have been applied. We will use
this global counter for integrating the relaxed floating-point semantics with CakeML’s
proof-producing synthesis.

In principle, RealCake’s relaxed floating-point semantics and the Icing semantics model
the same set of optimization results, as for each non-deterministic Icing result there exists
a deterministic oracle under which RealCake’s semantics returns the same value, and
vice versa. However, because CakeML source semantics is deterministic and the compiler
correctness proofs inherently rely on this fact, supporting floating-point optimizations in
CakeML source is only possible with the optimization oracle. Adding the oracle to the
global state of the semantics causes the least amount of friction with existing CakeML
proofs, while also enabling the non-deterministic simulation proofs from Icing in CakeML
via manipulation of the global optimization oracle.

To integrate the relaxed floating-point semantics of RealCake with evaluate, we add
a separate case for floating-point operators to evaluate in Figure 6.5b. As for standard
operator evaluation in Figure 6.5a, when evaluating a floating-point operation, evaluate
first evaluates the arguments, and runs do_app. When evaluating a floating-point operation,
function do_app does not alter the global state (st’.refs), and it does not call into the
foreign function interface (st’.ffi). Function do_app simply returns the value tree
representing operator op applied to the argument values in vs. If do_app successfully
returns value tree r, evaluate attempts to optimize the value tree. To this end, function
optimizeIfOk first checks whether the canOpt field of the optimization oracle is set to
opt. If optimizations are allowed, the function performs the optimizations of the oracle
(opts 0). Then, the optimization oracle is advanced to the next decision, and the global
optimization counter choices is incremented. Function optimizeIfOk returns both the
global state updated with the new optimization oracle, and the optimized value tree. If
no optimizations are allowed, the function leaves its inputs unchanged. Finally, if op
is a Boolean comparison of floating-point value trees (isFpBool op), evaluate turns the
resulting value tree into a Boolean constant as CakeML eagerly evaluates control-flow
expressions.

For Icing, it was sufficient to eagerly evaluate value trees into floating-point words once
a control-flow decision was made (Section 5.3). However, to keep the changes to the
CakeML semantics local and manageable, RealCake’s relaxed floating-point semantics
eagerly evaluates value trees into words as soon as a Boolean comparison is applied to
them, even if no control-flow decision is made afterwards.
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Figure 6.5c adds the optimization annotations opt: and noopt: as a separate case to
evaluate. FpOptimize annot e means that expression e is evaluated under the optimiza-
tion scope annot, which can either be opt: or noopt:. Evaluation of an optimization
scope replaces the current semantic scope in canOpt with the new scope annotation
(updateOptFlag st annot), before evaluating e. Next, the old annotation is recovered by
resetOptFlag(st’, st). Function addAnnot(annot, vs) ensures that all value trees in
vs are extended with a correct scoping annotation. This is required to ensure that the
semantics respects the fine-grained control. If evaluate did not add the annotation to the
value trees, the semantics could optimize expression noopt:(x + 2.4) by first evaluating
x + 2.4 and then optimizing it once the expression is used as part of a larger floating-point
expression.

6.3.2. Integrating Relaxed Floating-Point Semantics into the Compiler
Toolchain

If we want to fully integrate RealCake’s relaxed floating-point semantics with CakeML, we
have to also integrate it with the CakeML compiler backend and the tools included in the
CakeML compiler toolchain. In the toolchain, a binary implementation of the compiler
is obtained by verified bootstrapping [68] of the in-logic compiler using proof-producing
synthesis [2]. Furthermore, CakeML source code can be verified using CakeML’s program
verification tools that rely on characteristic formulae (CF) [46], allowing Hoare-logic
like manual proofs (e.g., to verify non-terminating programs [104] and a proof checker
for higher-order logic [1]). To prove whole-program specifications (Section 6.5), we
integrate RealCake’s relaxed floating-point semantics with the compiler backend, the
proof-producing synthesis and CF.

CakeML Compiler Backend. A key insight for getting the deterministic compiler
proofs to interact nicely with the optimization oracles used in RealCake’s relaxed floating-
point semantics was to implement the fast-math optimizer as a source-level optimization
pass, separate from the CakeML compiler backend. The CakeML compiler backend
already compiles deterministic 64-bit floating-point kernels to machine code [9] and we
reuse this infrastructure by adding a third optimization scope, strict, to the relaxed
floating-point semantics. Intuitively, the strict annotation completely disallows floating-
point optimizations in the compiler backend, allowing us to preserve determinism of the
source semantics for the correctness proofs.
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Any program that is run with the strict annotation will never apply optimizations and
the program will only perform IEEE-754 correct arithmetic operations. The difference
between a strict and a noopt annotation is that strict is “sticky” in the sense that if a
program ever enters strict mode, evaluation becomes deterministic and cannot escape
from it through successive opt annotations, while noopt and opt can be mixed freely;
e.g., a program may be under a noopt scope, while parts of it are marked with opt to
selectively apply optimizations.

Proof-Producing Synthesis and CF. The proof-producing synthesis and CF are key
components of the CakeML compiler, and required for bootstrapping the compiler. As
both crucially depend on how the CakeML source semantics are defined, we have to
make sure that the bootstrapping still works, even after adding the relaxed floating-point
semantics. Specifically, the synthesis relies on expressions being pure, and thus not
altering global state. The crux is that we need the optimization oracle to reside in global
state for the backwards simulation proofs. Combining both of these facts, we therefore
must ensure that no floating-point optimizations can be applied in code produced by the
proof-producing synthesis.

Strictly speaking, we must be able to prove that the code produced by the proof-
producing synthesis ignores the state of the floating-point optimizer, i.e., we can always
safely replace it by a different optimizer state without changing the result. This restriction
effectively limits the proof-producing synthesis to emitting only IEEE-754 correct code
that is not subject to fast-math-style optimizations. To prove that the code produced by
the proof-producing synthesis has this property, we use the choices component of the
optimization oracle as it makes optimization attempts by the semantics observable in the
global state. We prove a lemma that if optimizations are allowed and the optimization
oracle does not change, evaluation cannot have attempted to optimize floating-point code
under an opt: scope and we can safely replace the oracle with any other floating-point
oracle:

Theorem 6.2 (evaluate can swap floating-point oracles).

evaluate(st, refs, e) = (st’, r) ∧

st.fpState.canOpt = opt ∧ st.fpState = st’.fpState⇒

∀ fp. evaluate(st with fpState = fp, refs, e) =

(st’ with fpState = fp, r)
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To use this lemma, the synthesis configures the initial optimization oracle to be running
under an opt scope, with an empty list of optimization choices, essentially allowing us to
prove the assumptions of Theorem 6.2. From the conclusion of Theorem 6.2 we can then
ultimately establish the invariant of the expression being pure.

We use an optimization counter instead of a Boolean flag, as some of our simulation
theorems must combine optimization oracles, while preserving optimization decisions (e.g.,
when combining oracles for left and right-hand sides of binary operators). In such proofs,
the optimization counter gives an exact bound on when the behavior of the oracle must
change.

The exact same technique is applied to CF: we make sure that programs reasoned
about with CF cannot apply optimizations based on the optimization oracle.

6.3.3. Extending CakeML with Real-Number Arithmetic

The second semantics added to CakeML in RealCake is a real-number semantics used
for bounding roundoff errors of floating-point kernels. We extend the CakeML source
semantics with support for real numbers and real-number operations by adding a new
case to evaluate’s operator evaluation in Figure 6.5d. Here, we focus on the real-number
semantics. In Section 6.5 we explain how RealCake translates floating-point programs
into their real-number counterpart.

Evaluation of real-number operations follows the simple case from Section 6.3.1. The
main difference is that we extend the optimization oracle in the global state with an
additional flag real_sem. Function realsAllowed st.fpState checks that the flag is set
to true, otherwise evaluation is aborted. The flag disallows real-number operations where
necessary, as the real-valued semantics is only used for verification purposes. Further, the
compiler does not compile real-valued operations or constants. In the compiler proofs, we
rule out real-number operations by assuming that the flag is switched off.

Finally, to preserve invariants of the proof-producing synthesis and CF, the real-number
semantics requires a treatment similar to the relaxed-floating-point semantics: When
integrating the relaxed floating-point semantics with proof-producing synthesis of CakeML
(Section 6.3.2), the global counter choices is used to make attempted floating-point
optimizations observable, and the global counter is similarly incremented if evaluation of
a real-number operation is attempted but fails (function advanceOracle).

In this section, we have presented operator evaluation of RealCake as separate functions.
In our implementation, when evaluating an App op es expression, the CakeML source
semantics first does a case split on op and chooses whether to apply standard operator
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evaluation (Figure 6.5a), relaxed floating-point semantics (Figure 6.5b), or real-number
semantics (Figure 6.5d).

6.4. RealCake’s Floating-Point Optimizer

Having extended CakeML with relaxed floating-point semantics, we implement a fast-math-
style peephole optimizer for RealCake and prove its correctness with respect to the relaxed
floating-point semantics. The pseudo-code for our optimizer is given in Figure 6.6. At a
high-level, we split optimization into two steps: In step one, function planOpts computes
which optimizations should be applied to the kernel. We call the list of optimizations
returned by planOpts the optimization plan and refer to this first step as optimization
planning. In step two, function applyOpts(plan,e) applies the optimization plan plan to
floating-point kernel e. Finally, function noOpts tags the result with a marker to dissallow
further optimizations, which is required to recover the determinism needed by the CakeML
compiler proofs. We call this second step optimization execution. Instead of verifying
optimization planning and optimization execution, we simplify the proof and show only
correctness of optimization execution. This approach decouples the implementation of the
algorithm that decides which optimizations are applied from the correctness argument.

Optimization Planning. For a floating-point kernel e, function planOpts(e) returns
a list of tuples (path, opts), where the left-hand side path is an index into the kernel
stating where the kernel should be optimized, and the right-hand side opts is a list of
optimizations stating how the kernel should be optimized. The optimization planner
planOpts is split into the following phases (applied in this order):

• canonicalForm puts all floating-point kernels into a canonical shape replacing x− y
with x+ ((−1)× y), associating +,× to the right ((x+ y) + z → x+ (y + z)), and
moving constants to right-hand sides with commutativity of + and ×.

• undistribute replaces expressions like (x×y)+(x×z) with x×(y+z), “undistributing”
as much as possible to increase possibilities for fma introduction, and reduce the size
of the floating-point kernel. The symmetric case of (y×x)+(z×x) is ignored by the
undistribute phase, as canonicalForm rotates all multiplications with commutativity.

• peepholeOptimize re-establishes canonical form and applies the optimizations from
Figure 6.7.
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(* Step 1: Which optimizations should be performed *)

2 def planOpts e = composePlans ([canonicalForm; undistribute; canonicalForm;

peepholeOptimize; balanceTrees], e)

4

(* Step 2: Apply optimizations to kernel *)

6 def applyOpts (plan,e) = noOpts (fst (optimizeWithPlan (plan,e)))

8 def optimizeWithPlan (plan, e) =

case plan of

10 | [] => (e, Success)

| (Expected eOpt):: plan’ =>

12 if eOpt <> e then (e, Fail) else optimizeWithPlan (plan’,e)

| (path,opts):: plan’ =>

14 let eOpt = performRewrites (path, opts, e) in

if eOpt = e then (e, Fail)

16 else

let (eFinal, res) =

18 optimizeWithPlan (plan’, performRewrites path opts e) in

if res <> Success and eFinal = eOpt then (e,Fail) else (eFinal, res)

20

def performRewrites (path, opts, e) =

22 if path = Here then rewrite (opts, e)

else case recurse (path, e) of

24 | Some (subpath, subexp) => performRewrites (subpath, opts, subexp)

| None => e

26

def rewrite (opts, e) =

28 case opts of

| [] => e

30 | (lhs, rhs) :: rws’ =>

if (isPureExp e) then rewrite (opts, apply (lhs,rhs) e) else e

Figure 6.6: Pseudo-code for optimization planner and optimization passes
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x× 0→ 0

x× 1→ x

x×−1→ −x

x× 2→ x+ x∗

x× 3→ x+ (x+ x)

x+ 0→ x

x− x→ 0

−(x× y)→ x× (−y)∗

x+ (−y)→ x− y∗

x× y + z → fma(x, y, z)

Figure 6.7: Optimizations currently used by the peephole optimization phase, IEEE-754
preserving optimizations are marked with a ∗

• balanceTrees reorders sub-expressions in the floating-point kernel by replacing
deeply-nested arithmetic expressions like x1 + (x2 + (x3 + x4)) by more shallow
versions, such as (x1 + x2) + (x3 + x4) and similarly for ×.8

Function composePlans concatenates the optimization plans produced by each phase
(Figure 6.6, line 2). After each phase, composePlans adds an Expected annotation into
the optimization plan, before the optimizations of the next phase. In the optimization
execution phase, when encountering an Expected eOpt annotation the optimizer continues
optimization only if the current intermediate optimization result is equal to expression
eOpt. We found this extension very useful when debugging the separate phases as it made
the optimizer fail if an incorrect optimization plan was computed.

Optimization Execution. When executing the optimization plan, function applyOpts

first runs function optimizeWithPlan on the plan and its input kernel, where
optimizeWithPlan applies all elements of a given optimization plan one by one. Function
optimizeWithPlan optimizes an expression only if it is wrapped under an opt: annotation.
Further, either all or none of the optimizations in the plan are applied: if optimization
fails, then the unoptimized input kernel is returned.

For each element of the plan (path, opts), optimizeWithPlan traverses expression e

following path until reaching a sub-expression e’ (lines 22 and 23 of Figure 6.6) and
applies the optimizations opts at the end of the path (line 21). Having reached expression
e’ at the end of path, function optimizeWithPlan calls function rewrite(e, opts) (line
26) that applies the optimizations opts to the CakeML expression e’.

As CakeML source supports stateful features like reference cells, and calls into a foreign-
function-interface (FFI), function rewrite(e, opts) checks that CakeML expression e

8We added balanceTrees as an optimization pass to simplify register allocations.
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Theorem 6.3 (noOpts - correctness).
evaluate st env [noOpts e] = (st2, r) ∧ st .fp_state.canOpt 6= FPScope Opt ∧
isPureExp e ⇒
∃ choices2 r2.

evaluate (st with fp_state := noOptsApplied st .fp_state) env [e] =

(st2 with fp_state := noOptsAppliedWithChoices st .fp_state choices2, r2) ∧
noOptSim r r2

Theorem 6.4 (optimizeWithPlan - correctness).
evaluate st1 env (optimizeWithPlan (planOpts e) exps) = (st2, Rval r) ∧
allVarsBoundToFPVal exps env ∧ flagAndScopeAgree cfg st1.fp_state ∧
notInStrictMode st1.fp_state ∧ noRealsAllowed st1.fp_state ⇒
∃ fpOpt choices fpOptR choicesR.

evaluate (addOptsAndOracle st1 (getRws (planOpts e)) fpOpt choices) env exps =

(addOptsAndOracle st2 (getRws (planOpts e)) fpOptR choicesR, Rval r)

Figure 6.8: Correctness theorems for functions noOpts and applyOpts

is a pure (floating-point) expression. This check, which is implemented as a function
isPureExp e, effectively rules out optimization of expressions that use any of CakeML’s
stateful features.

The result of running optimizeWithPlan is given to function noOpts (line 6 of Figure 6.6).
The function performs a bottom-up traversal of expression e, replacing any opt: annotation
with a noopt: annotation, disallowing further optimizations and, as a result, making the
program’s semantics deterministic.

6.4.1. Correctness of the Fast-Math Optimizer

Our optimizer is split into two separate phases, optimization planning, and optimization
execution. A key benefit of this split is that we can prove correctness of optimization
execution without caring about the exact optimizations contained in the plan. Rather, we
verify applyOpts for any potential plan generated by our optimization planner. We state
the correctness theorem for applyOpts in Figure 6.8. At a high-level, we show that the
optimizations done by applyOpts are correct with respect to the relaxed floating-point
semantics, and no further optimizations can be applied afterwards. Accordingly, we split
correctness of applyOpts into two proofs.

First, we prove in Theorem 6.3 that running the result of noOpts e gives the same result
as running e with an oracle that performs no optimizations. Theorem 6.3 is proven once
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and for all via a straightforward structural induction on the argument kernel e. The
theorem assumes that all expressions given to noOpts are pure, however this is not a
limitation of the overall result, as the theorem is only used for optimized floating-point
kernels which must be pure anyway.

Second, we prove that there is a backwards simulation between the result of
optimizeWithPlan(planOpts e) and e. Theorem 6.4 proves: for the result obtained from
evaluating the syntactically optimized kernel, there exists an optimization oracle such that
evaluate returns the same result when semantically optimizing with the optimizations
from the computed plan. The CakeML source semantics is untyped, and thus we assume
that all variables are bound to floating-point constants in exps (allVarsBoundToFPVal).
As we did earlier for Icing (Section 5.4.2), instead of proving one global correctness of
optimizeWithPlan for the overall plan, we reduce the global correctness proof to a series of
correctness proofs about the separate phases, and combine them into the overall backwards
simulation. Ultimately, the proof boils down to proving a backwards simulation for each
rewrite supported by RealCake for function rewrite, and composing them to form the
overall correctness proof for an arbitrary plan via lifting lemmas.

Distributivity in RealCake. When developing Icing and proving optimizations correct,
distributivity was a major challenge because it changes the number of occurrences for a
sub-expression (see Section 5.5.3 for a discussion). A key reason for why this was a major
challenge was the eager evaluation of conditional expressions in Icing as this forced a “loss
of context” in the correctness proof, where optimizations that were applied syntactically
could not be applied in the Icing semantics anymore.

For RealCake proving correctness of distributivity turned out to be easier for two
reasons: First, we limited the expressions that are syntactically optimized to pure floating-
point expressions, i.e., there was no eager execution getting in the way. Second, for the
exact setting in RealCake, using relaxed floating-point semantics, we could prove a key
lemma that was not provable for Icing, which we state informally below:

Theorem 6.5 (rewrite hoisting).
Let e be a pure CakeML floating-point expression and fpState a floating-point
optimization oracle that allows semantic optimizations (fpState.canOpt = Opt).
Further, evaluating e with CakeML semantics returns value tree fp.
Then, there exists an optimization schedule opts such that we first evaluate e

with CakeML semantics using the empty oracle, and then apply the schedule
opts to the intermediate result to obtain value tree fp.
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We call Theorem 6.5 “rewrite hoisting” as we use it in backwards simulaion proofs to
push optimizations to the end of an evaluation, essentially splitting semantic optimization
into first evaluating the expression and then applying all optimizations in one go. With
this lemma we were able to prove correctness of distributivity with respect to the relaxed
floating-point semantics within around 180 LOC.

Extending the Optimizer. Extending the RealCake optimizer requires extending both
the implementation of the optimizer and its correctness proof. To add a new peephole
optimization, a user adds the optimization to the list of optimization of peepholeOptimize
and extends the correctness theorem for peepholeOptimize. All other theorems need
not be changed. We provide a set of lemmas that can be used to reduce the global
correctness proof of peepholeOptimize to a simple local backwards simulation for the
newly-added optimization in terms of the rewrite function only. Adding a new phase
to planOpts is more involved as it requires showing a global correctness theorem for
the newly added phase, as well as extending the theorem that splits up correctness of
planOpts into correctness of its components. The complexity of the first proof depends on
the complexity of the phase, whereas splitting up the correctness proof for planOpts is a
straightforward proof showing that optimizations of the newly added phase are contained
in the optimizations applied by planOpts.

6.5. Proving Error Refinement with RealCake

CakeML with relaxed floating-point semantics optimizes floating-point kernels and auto-
matically proves a relation between the unoptimized and the optimized kernel. However,
we argue that to meaningfully optimize floating-point arithmetic in a verified compiler,
the compiler must relate the optimized floating-point program and the unoptimized
real-valued program.

To understand why we argue for such an unconventional correctness theorem, we
compare floating-point optimizations with classic compiler optimizations. Classic compiler
optimizations like constant propagation and dead-code elimination have a clear definition
of when they can be applied and one can prove that the optimizations do not change
the program result. While floating-point fast-math optimizations obviously also have
a clear definition of when they can be applied, they do not follow the intuition of “not
changing program results”. As an example, we introduce an fma instruction in the simple
expression x * 2.9 + 0.05 with relaxed floating-point semantics: fma(x, 2.9, 0.05).
The fma makes the expression generally faster and locally more accurate, as the result is
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only rounded once. Correctness of the fast-math optimizer proves a backwards simulation
between the two example expressions, however, the theorem does not capture the change
in roundoff errors.

We propose the notion of error refinement : the compiler may optimize a floating-
point kernel aggressively as long as the results remain within a (given) bound relative
to real-number semantics. Further, error refinement gives a clear, easy to understand
reference semantics for floating-point programs: the idealized real-valued semantics of the
unoptimized program. This implicit real-number semantics is closer to what a programmer
may have in mind when writing floating-point code, and error refinement respects error
bounds that the programmer has already established.

We make this notion of error refinement explicit by implementing a fully automatic
pipeline that first computes an upper bound on the roundoff error of a floating-point
kernel in CakeML, and then compares it to a user-specified accuracy bound. To implement
this pipeline, we use our roundoff error analysis tool FloVer (Section 2.4). We prove the
roundoff error bound correct with respect to a run of the original input kernel under an
idealized real-number semantics.

6.5.1. Translating RealCake Kernels into FloVer Input

To infer roundoff errors for a RealCake kernel with FloVer, we define a straightforward
encoding function toFloVer e, translating floating-point kernels with variables, constants,
unary and binary floating-point operations, fmas, and let bindings into FloVer syntax.
Correctness of the translation functions proves once and for all a simulation relating
deterministic RealCake floating-point semantics with FloVer’s idealized finite-precision
semantics. To prove the simulation, our translation function ensures that the kernel is
wrapped under a noopt: annotation. As roundoff error analysis tools depend on ranges
for the input variables, our pipeline also requires a real-number function specifying these
input constraints.

RealCake implements a function isOkError(e, P, err) that returns true if err is a
sound upper bound on the worst-case roundoff error for RealCake expression e and
input constraints P. First, the RealCake kernel e is translated into FloVer syntax with
toFloVer e. Function isOkError then runs FloVer’s unverified inference algorithm (see
Section 4.3 for a more detailed discussion) to generate a (untrusted) roundoff error analysis
certificate for the FloVer encoding of e and input constraints P. FloVer’s certificate checker
automatically checks the certificate, and if the check suceeds, the error bound encoded in
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the certificate is correct. Finally, isOkError checks that the global upper bound encoded
in the certificate is smaller or equal to the user-specified error constraint err.

6.5.2. Proving Roundoff Error Bounds for RealCake Kernels

To prove error refinement for an optimized kernel, we connect the soundness theorem
of FloVer to RealCake’s relaxed floating-point semantics. Together with the idealized
real-valued semantics we show once and for all the HOL4 theorem:

Theorem 6.6 (CakeML-FloVer roundoff errors).
Let f a floating-point kernel, P an input constraint for f , err a user-given
accuracy bound, theV ars the set of free variables of f , vs a list of floating point
values, body a CakeML expression, and env a CakeML execution environment,
then
isOkError_succeeds (f ,P , err , theVars, body) ∧
isPrecondFine (theVars, vs, P) ⇒
∃ r fp.

realEvals_to (realify body , envWithRealVars env theVars vs, r) ∧
floatEvals_to (body , envWithFloatVars env theVars vs, fp) ∧
abs (valueTree2real fp − r) ≤ err

On a high-level, Theorem 6.6 states that if function isOkError succeeds, the analyzed
function can be run both under floating-point and real-number semantics, and err is an
upper bound on the roundoff error. The assumptions are: isOkError succeeds, and body is
the function body of the RealCake floating-point kernel f , with the parameters theV ars
(assumption isOkError_succeeds); and the values vs bound to the parameters theVars

are within the input constraints P (assumption isPrecondFine (theVars, vs, P)).

In the conclusion, function realify replaces floating-point operations by their real-
number counterparts. The theorem then shows that there exists a real number r and a
floating-point value tree fp such that evaluation of the function under an idealized real-
number semantics returns r (realEvals_to), evaluation under floating-point semantics
returns value tree fp (floatEvals_to), and err is an upper bound to the roundoff error of
kernel f (abs(valueTree2real fp− r) ≤ err).

Error refinement relates the user-given error bound back to a real-number semantics of
the initial, unoptimized kernel, but RealCake runs function isOkError on the optimized
kernel. In addition to Theorem 6.6 we also prove that the optimizations applied by
RealCake are real-valued identities. Exactly like we prove correctness of optimizeWithPlan
in Section 6.4.1, we have proven once and for all a simulation between the real-number
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semantics of the optimized kernel and its unoptimized version. The theorem proves that
the real-number semantics of optimized floating-point kernel and the unoptimized floating-
point kernel are the same. Combining this theorem with Theorem 6.6, we automatically
prove error refinement for floating-point kernels.

6.6. Evaluation: Performance and Accuracy Proofs

In this section, we demonstrate RealCake’s error refinement proofs, benchmark optimiza-
tion results, and give an overview of the size of the development. Overall, the RealCake
development spans roughly 33k lines of proof-code, composed of the relaxed floating-point
semantics and the real-number semantics (∼7k LOC, including proofs), the implementa-
tion and correctness proofs for the optimizer (∼20k LOC), and the benchmarks from the
evaluation (∼7k LOC).

We evaluate RealCake on 51 benchmarks taken from the standard floating-point
benchmark set FPBench [31]. Our evaluation includes all FPBench benchmarks that use
floating-point operations that are supported by RealCake and we exclude only those that
cannot be expressed in RealCake (for instance we exclude benchmarks with elementary
function calls; i.e., functions like sin and cos9). We use the preconditions that are already
specified in FPBench, but modify them slightly for the jetEngine and n_body kernels such
that FloVer can prove a roundoff error bound and does not report a possible division by
zero. Our evaluation shows how RealCake establishes end-to-end correctness proofs, and
compares the runtime of the optimized and unoptimized kernels.

6.6.1. Automated End-To-End Proofs

We have translated all 51 FPBench benchmarks into HOL4 script files that are read
by RealCake. Each script file defines the original, unoptimized, floating-point kernel, a
precondition for the kernel, and a user-provided error bound. For simplicity, our evaluation
uses 2−5 as the user-provided error bound for all of the benchmarks, though those would
be given by the compiler user in a real-world setting.10

At the end of each benchmark file, our HOL4 automation fully automatically optimizes
the kernel, instantiates Theorem 6.4 for the generated plan, infers a roundoff error bound
and compares it to the user-provided error bound. Finally, a whole-program specification

9Elementary functions could be added using libmGen (Chapter 4), but this would require some additional
machinery beyond error refinement.

10If the error bound is choosen too tightly the optimizer may reject every optimization candidate, while
a too coarse bound could allow for too aggressive optimizations.
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relating the behavior of the machine code for the optimized program to the real-number
semantics of the unoptimized program is proven automatically by combining the individual
proofs.

RealCake proves the end-to-end correctness theorem (Theorem 6.1) for 45 benchmarks.
That is, for these benchmarks it is able to show that the roundoff error of the optimized
program is below the specified default error bound of 2−5. For the three rump benchmarks
and the test04_dqmom9 benchmark, the computed errors are larger than the user-provided
error bound (already for the original unoptimized program), and for the benchmarks
n_bodyXmod and n_bodyZmod FloVer is not able to infer a roundoff error bound as its
HOL4 computation becomes stuck, likely due to limitations in the HOL4 real number
computations.

We show the errors for the optimized and unoptimized kernels in Table 6.1. “Orig.”
is the roundoff error for the unoptimized kernel, “fast-math” is the roundoff error for
the optimized kernel, and column “Impr.” shows the percentage by which the error
improved with our fast-math optimizations, i.e., if the number is less than 0% the error
has increased, and decreased if it is greater than 0%. We highlight benchmarks where
the roundoff error has been decreased by the RealCake optimizer in bold font. While
improving the roundoff error is not the goal of our optimizations, fma instructions are
said to be locally more accurate, and reordering of operations influences roundoff errors
too. Hence we evaluate the effect on roundoff errors of our optimization strategy. Overall,
we notice that if RealCake can infer a roundoff error, the error of the optimized kernel
is usually within the same order of magnitude as the unoptimized version, but in many
cases it is actually more accurate.

The benchmarks delta4, delta, rigidBody1, and rigidBody2 have the largest difference
in roundoff errors. By inspecting the generated code we found that in these cases, RealCake
has significantly alterted the structure of the kernel. The roundoff error computed for a
single kernel is highly influenced by the order of operations, thus we suspect that this
large difference is mainly due to operator odering.

6.6.2. Performance Improvements

We compared the performance of unoptimized and RealCake’s optimized floating-point
kernels. In a first run, we measured wide differences in speedups and slowdowns. By
manually inspecting the code, we noticed a missing optimization in CakeML: 64-bit word
constants should be pre-allocated (or lifted) to increase performance. Lifting constants is a
worthwhile optimization in general, and particularly effective for floating-point programs,
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Name Orig fast-math Impr.

bspline3 1.295e-16 1.295e-16 0%
carbonGas 5.688e-08 5.688e-08 0%
cartToPol 2.815e-09 2.463e-09 13%
delta4 4.048e-12 2.028e-13 75%
delta 1.970e-13 2.940e-12 -198%
doppler1 6.534e-13 6.412e-13 2%
doppler2 6.534e-13 1.639e-12 50%
doppler3 1.675e-12 2.680e-13 20%
himmilbeau 3.417e-12 3.003e-12 12%
hypot 2.815e-09 2.463e-09 13%
hypot32 2.815e-09 2.463e-09 13%
i4modified 4.002e-13 4.002e-13 0%
intro_ex 2.220e-10 2.220e-10 0%
jetEngine∼ 5.209e-08 3.898e-08 25%
kepler0 1.761e-13 1.801e-13 -2%
kepler1 8.397e-13 8.467e-13 -1%
kepler2 4.069e-12 3.973e-12 2%
matDet2 5.107e-12 4.663e-12 9%
matDet 5.107e-12 4.663e-12 9%
n_bodyX∼ ERR ERR ERR
n_bodyZ∼ ERR ERR ERR
nonlin1 2.220e-10 2.220e-10 0%
nonlin2 2.657e-09 2.657e-09 0%
pid 7.621e-15 7.727e-15 -1%
predatorPrey 3.395e-16 3.366e-16 1%
rigidBody1 6.565e-11 5.329e-13 80%

Name Orig fast-math Impr.

rigidBody2 5.579e-13 6.410e-11 -360%
rump_C 4.079e+22 3.859e+22 5%
rump_rev 3.859e+22 3.679e+22 5%
rump_pow 4.079e+22 3.859e+22 5%
runge_kutta4 2.220e-14 2.220e-14 0%
sec4_example 2.657e-09 2.657e-09 0%
sine_newton 7.495e-15 6.275e-15 16%
sineOrder3 1.765e-15 1.765e-15 0%
sine 1.538e-15 1.373e-15 11%
sqroot 1.115e-15 1.059e-15 5%
sqrt_add 1.322e-12 1.322e-12 0%
sum 5.995e-15 5.995e-15 0%
t01_s3 5.995e-15 5.995e-15 0%
t02_s8 9.548e-15 8.438e-15 12%
t03_nl2 4.885e-14 4.885e-14 0%
t04_dqmom9 1.999 1.999 0%
t05_nl1_r4 4.441e-06 4.441e-06 0%
t05_nl1_t2 2.776e-16 2.776e-16 0%
t06_sum41 1.443e-15 1.332e-15 8%
t06_sum42 1.332e-15 1.332e-15 0%
turbine1 1.588e-13 1.541e-13 3%
turbine2 2.213e-13 2.213e-13 0%
turbine3 1.108e-13 1.061e-13 4%
verhulst 8.343e-16 8.343e-16 0%
x_by_xy 2.220e-15 2.220e-15 0%

Table 6.1: Roundoff errors for optimized and unoptimized FPBench benchmarks; bench-
marks where we have altered the preconditions to avoid division-by-zero errors
are marked with ∼; and benchmarks where the roundoff error improves are
highlighted in bold font and benchmarks where no end-to-end specification is
proven are in italics.

as it is does not change the program’s IEEE-754-semantics and floating-point programs
usually contain many constants. Thus, we implemented an independent, semantics
preserving, global optimization that preallocates 64-bit words as global variables. Our
performance evaluation compares three versions of FPBench kernels: the unoptimized
version as a baseline, the kernel with preallocated constants, and the kernel after first
applying fast-math optimizations and then preallocating constants.

To measure performance, CakeML generates ARMv7 machine code where each numerical
kernel is run 10 million times in a loop. Each version of the benchmark, with the core
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Name Orig Csts Csts + fast-math

bspline3∗ 18.14 1.75 (91%) 1.75 (91% / 0%)
carbonGas ∗ 103.40 3.85 (97%) 3.85 (97% / 0%)
cartToPol 2.05 2.04 (1%) 1.86 (10% / 9%)
delta4 6.34 6.33 (1%) 6.17 (3% / 3%)
delta 13.49 13.47 (1%) 11.44 (16% / 16%)
doppler1 36.02 3.25 (91%) 3.06 (92% / 6%)
doppler2 36.00 3.25 (91%) 3.06 (92% / 6%)
doppler3 35.98 3.25 (91%) 3.07 (92% / 6%)
himmilbeau 36.13 3.36 (91%) 3.05 (92% / 10%)
hypot32 2.04 2.04 (1%) 1.86 (10% / 9%)
hypot 2.05 2.05 (1%) 1.86 (10% / 10%)
i4modified∗ 1.77 1.78 (0%) 1.78 (0% / 0%)
intro_ex∗ 17.73 1.32 (93%) 1.32 (93% / 0%)
jetEngine∼ 195.99 11.89 (94%) 11.12 (95% / 7%)
kepler0 5.32 5.31 (1%) 5.30 (1% / 1%)
kepler1 8.19 8.20 (0%) 8.16 (1% / 1%)
kepler2 12.43 12.41 (1%) 12.22 (2% / 2%)
matDet2 6.38 6.37 (1%) 5.67 (12% / 12%)
matDet 6.37 6.38 (0%) 5.65 (12% / 12%)
n_bodyX∼ 38.46 5.20 (87%) 5.06 (87% / 3%)
n_bodyZ∼ 38.40 5.27 (87%) 5.15 (87% / 0%)
nonlin1∗ 17.72 1.31 (93%) 1.31 (93% / 0%)
nonlin2∗ 35.06 2.41 (94%) 2.41 (94% / 0%)
pid∗ 104.11 4.72 (96%) 4.72 (96% / 0%)
predatorPrey 52.25 2.81 (95%) 3.08 (95% / -9%)
rigidBody1∗ 19.11 2.78 (86%) 2.78 (86% / 0%)

Name Orig Csts Csts + fast-math

rigidBody2 54.92 5.10 (91%) 4.54 (92% / 11%)
rump_C 107.48 6.82 (94%) 6.26 (95% / 9%)
rump_rev 107.96 6.80 (94%) 6.27 (95% / 8%)
rump_pow 112.54 12.34 (90%) 11.57 (90% / 7%)
runge_kutta4∗ 93.46 9.53 (90%) 9.53 (90% / 0%)
sec4_example∗ 34.99 2.40 (94%) 2.40 (94% / 0%)
sineOrder3∗ 34.86 2.08 (95%) 2.08 (95% / 0%)
sine_newton∗ 126.34 10.73 (92%) 10.73 (92% / 0%)
sine∗ 55.36 6.03 (90%) 6.03 (90% / 0%)
sqroot 87.06 4.85 (95%) 4.65 (95% / 5%)
sqrt_add∗ 35.21 2.59 (93%) 2.59 (93% / 0%)
sum∗ 3.07 3.07 (1%) 3.07 (1% / 0%)
t01_s3∗ 3.07 3.08 (0%) 3.08 (0% / 0%)
t02_s8∗ 3.04 3.05 (0%) 3.05 (0% / 0%)
t03_nl2∗ 1.78 1.78 (1%) 1.78 (1% / 0%)
t04_dqmom9 163.82 11.76 (93%) 10.20 (94% / 14%)
t05_nl1_r4∗ 34.67 2.06 (95%) 2.06 (95% / 0%)
t05_nl1_test2∗ 34.00 1.54 (96%) 1.54 (96% / 0%)
t06_sum41∗ 1.70 1.70 (0%) 1.70 (0% / 0%)
t06_sum42∗ 1.68 1.67 (1%) 1.67 (1% / 0%)
turbine1∗ 121.02 5.29 (96%) 5.29 (96% / 0%)
turbine2∗ 69.90 3.94 (95%) 3.94 (95% / 0%)
turbine3∗ 121.29 5.28 (96%) 5.28 (96% / 0%)
verhulst∗ 51.28 2.27 (96%) 2.27 (96% / 0%)
x_by_xy∗ 1.51 1.51 (1%) 1.51 (1% / 0%)

Table 6.2: Running times for FPBench benchmarks; benchmarks where we have altered
the preconditions to avoid division-by-zero errors are marked with ∼; and
benchmarks where performance improves with fast-math optimizations are
highlighted in bold

loop running the kernel 10 million times, is run three times on five different sets of inputs,
for a total of fifteen runs per benchmark.

We run the ARMv7 code on a Raspberry Pi v3 and summarize the results in Table 6.2.
Column “Orig.” shows the average running time of the (10 million iterations of the)
unoptimized program in seconds. Column “Csts.” shows the average running time of the
program with preallocated constants in seconds plus the relative speedup in percent. And
column “Csts. + fast-math” shows the average running time of the program in seconds
when first running RealCake’s optimizer and then preallocating constants; the column
also shows first the relative speedup in percent with respect to the unoptimized program,

112



Chapter 6: Verified Optimization of Floating-Point Programs

and second the relative speedup with respect to the version with preallocated constants.
We mark benchmarks with a performance improvement of more than 1% of the fast-math
optimizations with respect to preallocating constants in bold (we identified a difference
within ±1% to be noise).

Initially, some benchmarks experienced slowdowns of up to 20%. Via manual inspection,
we noticed that the fast-math optimizer created too many instructions. As a simple
heuristic to prevent this problem, RealCake sums the arities of the floating-point operators
in the program versions, and returns the unoptimized version if the heuristic value of
the fast-math optimized program is greater than or equal to the unoptimized program.
Even if the heuristic rejects an optimization, RealCake computes roundoff errors for both
program versions and proves an end-to-end specification theorem about the optimized
program. In total, the heuristic rejects optimizations for 27 benchmarks, and we mark
them with a ∗ in Table 6.2.

Overall the evaluation shows that preallocating constants is a valuable optimization
for CakeML on its own. On top of this, our fast-math optimizer is able to improve
the performance for 20 benchmarks and for 7 of those significantly (> 10%). This is
remarkable, since the FPBench benchmarks are carefully hand-written and do not target
optimizations specifically and are not representative of, e.g., automatically generated code
from tools such as Matlab that would be used in the development of embedded system
kernels.

For one benchmark we notice a slowdown of 9% even with our heuristic, and the
program versions differ only by a single fma instruction. We suspect that this slowdown
is due to bad pipelining on the Raspberry Pi.

RealCake’s constant preallocation achieves a geometric mean speedup of 83%, and the
geometric mean of the speedup for RealCake’s optimizer compared with the program with
preallocated constants is 3%. The maximum speedup achieved with preallocating constants
only is 97%, and we notice no slowdowns. When applying fast-math optimization, the
greatest slowdown is -9%, and the maximum speedup is 16%.

In general, benchmarks with higher speed-ups from our optimization strategy usually
provide many opportunities to both introduce fma instructions, and remove constants. We
think that the foundational work in RealCake facilitates exploration of other optimization
strategies in the future.
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6.7. Related Work

In the previous sections we have already hinted at the immediate related work of Real-
Cake. This section puts the RealCake work into a broader context among three axis:
verified compilation of floating-point programs, verification of floating-point programs,
and optimization of floating-point programs.

Verified Compilation of Floating-Point Programs. Besides CakeML, Comp-
Cert [74] is the other major available verified compiler, compiling imperative C programs.
CompCert supports floating-point programs [17] following the strict IEEE-754 seman-
tics [58]. This semantics allows it to perform a few small optimizations that are IEEE-754
compliant such as constant propagation and replacing a multiplication by two by an
addition (x× 2→ x+ x).

RealCake supports additional optimizations based on real-valued identities that are
not IEEE-754 compliant. While our implementation is done in the context of CakeML
and verified in HOL4, the principles of RealCake are independent of the particular
programming language that is being compiled and should thus be portable to CompCert
as well.

The Alive framework [79] provides a way to specify and prove correct peephole optimiza-
tions for C++ code that can be applied in an LLVM pass. Alive verifies optimizations
using SMT solvers and has been extended to bit-precise floating-point optimizations and
optimizations involving special values, satisfying the IEEE-754 standard [86, 98]. These
optimizations are complementary to RealCake’s optimizations. Formal verification of
Alive’s peephole optimizations is addressed separately by the AliveInLean project [71].
The VELLVM project [124] provides a rigorous semantics for LLVM IR semantics to reason
about optimizations and implements IEEE-754-preserving floating-point arithmetic.

Verification of Floating-Point Programs. Besides FloVer, there are several other
tools that provide formally verified roundoff error bounds for floating-point arithmetic
expressions: FPTaylor [111], real2Float [80], Precisa [92], and Gappa [37]. Each of these
can in principle replace FloVer in RealCake and we chose FloVer for convenience as it is
implemented in HOL4.

Verification of floating-point programs that go beyond numerical kernels is still relatively
limited. The above-mentioned automated tools, for instance, do not consider function
calls, and techniques for loops are very restricted [92, 35], and thus require the user to
provide range annotations for each function call, as well as loop invariants in general.
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Entire programs have been manually formally verified w.r.t. a real-valued specification, but
with considerable human effort [106, 16], which is not suitable for a compilation setting.
The work by Kellison and Appel [64] is a novel approach to verifying the compilation of
ODE’s down to CompCert C floating-point code and provides accuracy guarantees just
like RealCake. However, their technique still involves manual proofs.

If we only require proofs of the absence of runtime exceptions, resp. absence of special
values, then abstract interpretation-based techniques do scale to larger programs [61] and
some provide formal verification [62].

Optimization of Floating-Point Programs. Floating-point optimizations have also
been considered outside of the traditional compiler context, where most of them focused
on performance optimization.

Precimonious [107] performs mixed-precision tuning, by determining which operations
can be implemented in a lower or higher precision, while satifying a user-provided error
bound. While Precimonious can handle short programs with loops, it cannot guarantee the
error bound as it uses a dynamic error analysis. Both FPTuner [26] and Daisy [34] perform
mixed-precision tuning while providing accuracy guarantees using a static analysis, but
can only handle relatively short straight-line expressions. Mixed-precision tuning requires
a global error analysis and is thus not suitable to be performed inside a fundamentally
modular compiler. However, the precision-tuned program could be further optimized by a
(verified) compiler. While RealCake currently only supports double precision floating-point
arithmetic, an extension with (uniform) single precision requires merely some engineering
work.

Several tools improve the performance or accuracy of floating-point programs by
rewriting with real-valued identities. Spiral [105] rewrites linear algebra kernels to improve
their performance on a particular hardware platform. Spiral does not take into account
roundoff errors; its rewrites are not IEEE-754-preserving, but it does not quantify the
errors. The HELIX project [123] uses Spiral as an external oracle for building a verified
optimization pipeline for dataflow optimizations. Optimizations in HELIX are done
with respect to real-number semantics which is orthogonal to RealCake’s floating-point
peephole optimizer.

Herbie [101] aims to improve the accuracy, instead of performance, of floating-point
arithmetic expressions but estimates roundoff errors unsoundly using a dynamic analysis.
The Salsa [30] tool applies a set of transformation rules to improve performance while
soundly tracking roundoff errors. Finally, Daisy [34] first applies rewriting similar to
Herbie in order to improve performance gains due to mixed-precision tuning. Still
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further away is the tool STOKE [109], which generates small floating-point kernels
by superoptimization, but which does not even guarantee real-valued equivalence. We
consider these optimizations to be orthogonal to the fast-math optimizations that we
consider in RealCake. We note that the scoping mechanism allows RealCake to easily
integrate parts of the code that have been heavily optimized, and that thus should not be
modified further by the compiler.
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Conclusion

We have pointed out two central deficiencies of how floating-point arithmetic is imple-
mented in verified compilers: floating-point machine code is not related to its real-number
equivalent; and floating-point machine code is produced by an inflexible one-to-one trans-
lation, ruling out interesting optimizations. To remedy these problems, we have presented
two complimentary extensions of the CakeML compiler.

The first extension implements support for elementary functions in CakeML. We started
by presenting Dandelion, which fully automatically verifies polynomial approximations of
elementary functions computed using a Remez-like algorithm. Using CakeML’s proof-
producing synthesis we have compiled Dandelion into a verified binary that makes
certificate checking fast. By combining Dandelion with the floating-point analysis tool
Flover and relying on CakeML’s implementation of floating-point arithmetic, we then
presented libmGen. Our CakeML extension libmGen combines the correctness theorems
and implementations of Dandelion, FloVer, and CakeML to compile real-numbered
elementary functions into floating-point machine code with an accuracy bound. This
accuracy bound accounts for both sources of error when working with floating-point
arithmetic: the approximation error due to implementing the elementary function as
a real-valued polynomial, and the roundoff error due to implementing the real-valued
polynomial in floating-point code.
The second extension adds support for floating-point performance optimization to

CakeML. We started by presenting our novel relaxed floating-point semantics called Icing.
The Icing semantics is an extension of IEEE-754 floating-point semantics that verifies
fast-math-style floating-point optimizations. Icing can model the behavior of both existing
verified and unverified compilers and, through its precondition interface, we designed an
infrastructure to integrate roundoff error reasoning with the Icing optimizations. We then
develop the RealCake compiler, integrating Icing with CakeML. One of the key insights
of RealCake is error refinement, which allows RealCake to relate optimized floating-point
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machine code with its unoptimized, real-valued counterpart. In our evaluation we have
shown that RealCake can achieve significant performance improvements for interesting
floating-point kernels while preserving user-given accuracy bounds.
To summarize, the foundational work presented in the thesis greatly improves the

support for floating-point arithmetic in the CakeML compiler. If we look back at our
initial motivating example, a kernel computing the x-coordinate when converting polar to
cartesian coordinates, we can use the tools presented in the thesis to verifiedly implement
the kernel in floating-point machine code with accuracy proofs all the way through. These
accuracy proofs relate CakeML-generated optimized floating-point machine code to its
unoptimized real-number equivalent, including elementary functions. Currently, the two
accuracy guarantees provided by libmGen and RealCake are separate. However, to obtain
an overall final result combining both extensions of the thesis, we expect that it suffices
to provide a good connecting lemma relating libmGen and RealCake.

With the foundational work done in this thesis, an immediate next step is to investigate
whether the presented ideas apply to other representations of real-numbers, e.g., fixed-
point arithmetic [122]. On the application side, an interesting research question for the
presented work is whether the combination of libmGen, RealCake, and the CakeML
ecosystem can be used to verify interesting safety-critical programs, and potentially even
some machine-learning code. This would extend the work from the accuracy guarantees
that relate floating-point code to its real-number equivalent to whole-system-specifications.
Such a whole-system-specification may include these accuracy guarantees but should also
include guarantees about more application-specific properties like, e.g., liveness, safety,
and possibly timing guarantees, depending on the target domain. The tools presented in
the thesis could then be used for automatically inferring necessary accuracy guarantees
that support the overall specification proof. We hope that such a specification could be
proven in terms of the real-number semantics only, abstracting away from the concrete
floating-point implementation.
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